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The purpose of this chapter is to resurrect an old area of research in
psychology, that of the study of “approach-avoidance behavior.” This research
topic, more or less forgotten for some time, can perhaps serve as a linkage
joining traditional motivation and learning psychology to the field of deci-
sion making. In fact, we suspect that approach~-avoidance characterizes most,
if not all, of a person’s life decisions. “Borrowing” a cooki¢ from Grandma’s
cookie jar, the dilemmas of dating and marriage proposals, college military
duty, applying for jobs, and confronting the schoolyard bully are a tiny sample
of such instances, which the reader can undoubtedly complement many times
over.

But why disinter a research problem presumably “laid to rest?” Psychology,
even in the more rigorous domains, is renowned for its faddish inclinations.
Novel research problems are unearthed and mined by the innovator for the
“obvious” nuggets and then as difficulties or complexities begin to appear,
they tend to be abandoned for new “mother lodes”” Researchers who, in the
spirit of the hard sciences, continue to investigate the phenomena often meet
with obstacles in publishing their results, because the research topic is “out-
of-date” It is not difficult to see that sustained scientific progress is slow when
pursued in this fashion. It is made worse by the inadequate treatment of classic
and historic research accorded our students in many of our undergraduate
and graduate programs.

In the present instance, we have on the one hand a lacuna in the formal
theories of decision making and on the other, a fruitful area that formerly
provided a link among motivation, learning, and decision making behavior.
Formal theorization in decision making has been virtually dominated by utility
theory and statistical decision theory, especially as put forth by Von Neumann

107



108 TOWNSEND ANO BUSEMEYER

and Morgenstern and advanced later by Savage and others. Much beautiful
mathematical work has been accomplished in these pursuits, espectally in
statistical decision theory, game theory, and of course, subjective expected
utility theory.

There are many advantages of these approaches, apart from their clegance
and employment in teiling us what our optimal behavior should be like and
their possible use in artificial intelligence. One well known justification is to
provide a touchstone with which to compare the not-so optimal behavior of
real life creatures. This concept has proven of great value in certain areas,
some related to decision making. The best known in experimental psychology
is probably signal detection theory (e.g., Green & Swets, 1966). It is also fair
to say that this rationale has been beneficial in decision research per se, in
pointing out how human decisions depart from the more ideal assumptions
or theorems of utility theory.

A missing quality, {rom the present viewpoint, are natural connections with
biology and more fundamentally, with that heritage in psychology built on
evolutionary principles. Growing out of Willilam James and others’ “func-
tionalistic”” characterizations of motivated behavior (i.e., organisms tend to
do what helps them survive; close to a tautology, but of immense importance
in bringing biology and psychology closer together), later “dynamic”
psychologists (e.g., Angell, Woodworth, etc.,) began to forge a true psychology
of motivation. Motivation went on to underpin a great deal of the theory
and experiment in learning, as expressed primarily in behavioristic animal
resecarch for more than half a century (e.g., Hull, Tolman, Skinner, etc.). A
valid criticism of behaviorism is that it tended to depreciate central cogni-
tion and another is that it ironically led to studying behavior in animals that
was less than naturalistic with respect to their original environment. The field
of ethology (e.g., Tinbergen, Lorenz, etc.) has done much to redress this lat-
ter skew. The emergence of “animal cognition”” has also aided in this regard
(eg., sce Roitblat, Bever, & Terrace, 1984). Nevertheless, the classical
behaviorists left us a legacy of ideas that even now influence our ways of think-
ing about human =nd animal behavior.

With regard to utility theory, there often seems to ba an absence of what
underlying motives mav drive the utility that an object or act may hold for
2 person. A number of other consequences tend to follow in the wake of the
spinit of utility theory that carry it further from human activities. For in-
stance ttlities are usually conceived as static summaries of a fixed set of
independent dimensional features or attributes. In reality these are, to the
extent that they do exist, probably dynamically changing over time.

Other recent developments related to utility theory have seen a substantial
merease in concern with what people actually do. This has been evident in
cmpirical research partly stimulated by testing various tenets and consequences
ot ntidity throry see an Teersky & Kahneman, 1981). One outcome has been
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simulation theories and models (e.g., Johnson & Payne, 1985). Another has
been the attempt to relax certain of the assumptions of utility theory in order
to better accommodate human decisional frailtics. As examples, we cite
Fishburn (1986), Luce and Narens (1985) and perhaps with most impact on
empirical psychology, Kahneman and Tversky (1979). Kahneman and Tver-
sky (1979) have gone far in providing intriguing evidence of humankind's stray-
ing from utility theory’s predictions. In doing so, they continue a tradition
starting as far back as 1738 with Bernouilli’s treatment of the Petersburg
paradox and later with the paradoxes of Allais (1953) and Ellsberg (1961).

Finally let us emphasize that our intent is not to denigrate the field of utility
theory and the rich heritage it has brought us, but rather to help fill in the
mostly unoccupicd and (we feel) neglected regions where traditional psychol-
ogy and biology may have something useful to say about decision making.

LEWIN’S FIELD THEORY AND RELATED
NOTIONS OF APPROACH-AVOIDANCE

An “old” area of research that effectively captures the importance of dynamic
conception of utilities, motivation and dynamism is so-called
approach~avoidance behavior. As a twentieth-century topic, its prime and
likely carliest promulgator seems to have been Lewin (1935). Lewin's theory
was an example of a gestalt field theory with an emphasis on spatial relations
among psychological objects, as opposed to the presumably more indepen-
dent congeries of “atoms’ associated with British empiricism, structuralism
and to some extent behaviorism (see, e.g., Boring, 1957). The other major
field “theory” (neither was formalized to any extent) was K&hler's brain ficld
(e.g., KShler & Held, 1949). Both flow out of gestalt tradition (a.g., Hilgard,
1956).

Lewin characterized the human as moving in a space replete with
psychological and physical objects possessing attractive or repulsive qualities
that would tend to draw the person toward or away from the object. Objects
could also have both positive and negative qualities at the same time, resulting
in ambivalence on the part of the person. The positive and negative ‘“charges”
were called “valences!” In order to escape the narrow confines of geometry,
which Lewin thought too confining and inapplicable, he drew on the coa-
cepts of point-set topology. Topology is that mathematical field that relin-
quishes such devices as angle, orthogonal dimension, linear order, and so on
in order to learn what may be preserved by continuous functions of one
topological space to another, without the usual assumptions of Buclidean
metric and the like. Lewin apparently did not pretend to be a mathematician
and was widely believed to be a genius by his followers.

On rercading some of his carly works (e.g., Lewin, 1936), we expected to
uncover serious misapprehensions of mathematical concepts. Surprisingly lictis
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to grouse about was found, although as noted carlier, Lewin did not himself
use any actual mathematics in his theorizing. What he did was to develop
metaphors based on the topological notions.

It is an open question as to how much of the actual topology will turn
out to be useful in experimental arenas, From our initial perspective, it ap-
pears easier to get somewhere when we spruce up the spaces to the level of
differentiable vector spaces. For then we can talk about direction, speed and
related notions. We will return to Lewinian ways of depicting the psychological
space, but first must fill in more of the history of approach-avoidance research.

It was not long after Lewin began to publish articles and books on dynamic
psychological spaces that Clark Hull incorporated the concept of approach-
avoidance in his own theory (e.g., Hull, 1938; excellent discussions of Hull’s
and Lewin’s theories may be found in Hilgard, 1956 and in chapters in the
anthology by Koch on Hull, and Estes on Lewin, AModern Learning Theory,
1954). It was in fact a natural extension of his ideas on drive, learning, response
strength, inhibition, and extinction. Lewin began at the relatively grandiose
level of complex human motivation and social movement and interaction
whereas Hull started with fairly detailed (though not always entirely rigorous)
assumptions at a quite microlevel of psychological processes. Nevertheless
Hull intended the theoretical consequences to be applicable at least in prin-
ciple to more complex human pursuits; although he never seemed overly in-
tarested in social interactions per se, in contrast to Lewin. Further, Hull used
some real mathematics, although it was rather more down to earth than the
topology to which Lewin verbally referred. He went so far as to define a simple
differential equation for the separate approach and avoidance as functions
of distance from the specified object, hereafter called the “goal object” or
simply “goal)’ This led to exponential types of valence or gradient curves
that yielded qualitative predictions for experimental situations. [However, Hull
never got around to linking up the approach and avoidance curves to dynamic
differential equations in ¢tirme (i.c.,, Hull's expressions were differential equa-
tions in space mather than time). It is interesting that during roughly the same
period, Rashevsky and others were using time-differential equations (i.e., with
time as an independent variable) to desceribe hypothetical psychological and
neuropsychological svstems., However, there scems to have been little or no
cross-talk between these croups.

The next major {igure in the short history of the subject was Neal Miller,
a student of Hull. Miller (1959) and Dollard and Miller (1950), applied the
ideas of approach-nvoidance and other facets of a neobchavioristic theory
to many aspects ol psychology, with special emphasis on clinical implications.
The quandary posed by 2 phobia such as acrophobia (fear of high places)
for a person living in the age of space and flight is obvious, and qualitatively
well deseribed by approachi-avoidance notions. For some reasons, after a ma-
jor summary of rroeress to date published in Volume 2 of the influential
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Psychology: A Study of a Science series (1959), Miller scems largely to have
moved to other interests.

It seems strange that through all the years that concepts associated with
positive and negative aspects of objects (used as is typical here, in a general
scnse) have been bruited about, no one has ever devcloped a dynamical
mathematical theory to capture the essentials of Lewin’s verbal and Hull's
slightly more rigorous ideas. In this chapter, we begin the development of
a formal theory of decisional conflict behavior, which we belicve characterizes
most, if not all of the major decisions in a human life. We hope also to soon
begin experimentation with human subjects employing sufficiently potent
positive and negative rewards that at least 2 modicum of realism is attained.

Our development treats positive and negatively valenced influences in a
descriptively simple fashion. The e¢xact mechanisms, psychological or
biological, are mostly unspecified at this point. This is not meant to underplay
the potential great importance of mental factors, such as personal feelings
of efficacy, for which, for example, Bandura and his colleagues (e.g., in press)
have provided ample evidence in motivated behavior. We nevertheless be-
lieve (although it is probably unprovable), that various mental facets of
approach-avoidance behavior evolved over ¢ons from reflex-like acts to more
internalized cognitive behavior such as mental vicarious trial-and-error
routines. Interactions or even subservience to other subprocesses such as per-
sonality and efficacy perhaps also emerged over the course of evolution.

Figure 5.1 shows the prototypical type of diagram devised by Lewin where
we see, in this instance, a person (P) propelled by positive drive toward a goal
but repelled by the negative aspects of an intermediary task, a frequent enough
situation in real life. This is an example of single goal, approach-avoidance.
We use the term “goal” even in cases where all valence is aversive, for simplicity
of expression. Of course, just as ubiquitous are situations where there exist
unpleasant consequences that arise after a pleasant goal has been reached.
Notably too, the classical gambles of uncertain decision making fall readily
into the framework. In particular, risk may be viewed as adding to potential
aversive consequences and thereby feeding the avoidance motivation, with
gain or winnings providing for approach motivation (¢f. Coombs & Avrunin,
1977). Of course, the situation becomes more complex in the presence of risk-
sceking people but that does not lessen the importance of the motivational
distinction between the positive and negative aspects of a situation.

Figure 5.2 shows a situation in which both of two goals are aversive. In this
type of situation, given an opportunity, the person may “leave the field"” soto
speak, as suggested by the dotted line in the Figure. However, if the dimensional-
ity of the tield is too restricted, then that may not be possible as we will see,
and the individual may vaciliate or come 10 rest at an equilibrium point.

Foven 1n the absence of other more positive objects in the vicinity of the
aversive choices, the rest of the field away from those despised objects is
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Violin Play
Lessons Basaball
with Buddies
Negative Positive
(=) (+)
Valance Yalence

FIG. 51. Exampleofa single—goal approach-avoidance situation when the
boy (P) Is attracted toward playing baseball(+) but rapelled by a violin
lesson(—) that stands baetween him and the attractive goal.

positive relative to the aversive negative goals. Of course, there is an infinitude
of rich possibilities of such motivational fields. In this chapter, we deal with
but a few of the simplest, but in a rigorous way.

Miller's verbal postulates for approach-avoidance seem a good place to
start a discussion that leads to a more formal system.

1. The tendency to approach a goal is stronger the nearer the subject is
to it. This is an application of Hull’s principle of the goal gradient and will
be called the Gradient of Approach.

5 The tendency to avoid a feared stimulus is stronger the nearer the sub-
ject is to it. This was an extension of the general idea of the gradient of rein-
forcement to avoidance learming. It will be called the Gradient of Avoidance.

3. The strength of avoidance increases more rapidly with nearness than
does that of approach. In other words, the gradient of avoidance is steeper
than that of approach. This was a new assumption necessary to account for
the behavior of going part way and then stopping.

4. The strength of tendencies to approach or avoid vanes direcdy with the
strength of the drive upon which they are based. In other words, an increase
in drive raises the height of the entire cradient. This assumption was necessary
to explain the fact that stronger shocks stopped the animals whereas weaker
shocks did not and also to explain the intuitively expected result that stronger
<hocks would be necessary to stop hungrier animals. This assumption was
a specific application of the general notion that response strength varies with
relevant drive

5. Below the asymptote ot learning, increasing the number of reinforced
irials will increase the strength of the response tendency that is reintorced.

6. When two incompatible responses are in conflict, the stronger one will
O CLT
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Miller goes on to form a set of deductions from the postulates. However
the majority of the “deductions” actually seem to be more like assertions
about the relations among the independent variables (deprivation, stimulus
intensity, training) and what corresponds to paramecters in the
approach-avoidance model (¢-8- slopes and intercepts of the gradients). Once
the model is formalized, these turn out to be obvious consequences. Our main
goal is rather to deduce relations between the dynamics of behavior (move-
ment toward or away from goals and vacillation) and model parameters.

Hull (e.g., 1938) captured the increases of both positive and negative ten-
dencies as the organism nears a goal conveniently set at the origin, by the
spatial differential equation dE/dD = —b/D where E= excitatory potential
(i.e., tendency toward a response), D= distance from goal, and b is a con-
stant of proportionality. This obviously leads to a solution of the form
E=a-b log(D). Another suggested form for E was E=a exp(—hxD). In the
former case, E evidently becomes infinitely large as one approaches the goal
whereas it stays finite in the second form. The first case of E approaching
infinity is not necessarily a major consideration because physics has many
similar examples; for instance, the force between two bodies is said to be pro-
portional to the squared distance between them. Thus, if the two bodies
approach one another, the force ideally should approach infinity—at the
time of impact, of course, a discontinuity is introduced into the dynam-
ics, Miller (1959) pictured the gradients as linear, although explicit form-
ulae were not given. We will later compare some different approach-avoidance
curves, or “gradients’ as they have traditionally been called. It is likely that
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F1G.53. Anexamploofa double-goal conflict situation where the parson's
approach versus avoldance potentals are tunctions of the distance from each
goal (which in this case fla in two-dimensional space).

this term is borrowed from physics; let us take a moment to establish the
connections.

A good starting point is to think of a goal attracting a person in analogy with
1 massive body attracting another body of negligible mass. In this case we might
try to model the attraction in terms of a single aumber that applies at a given
point in the space (i, for a given distance batween them and with given coordi-
nates). Because this number will vary over the spacs it yields a so~called scalar
(ie., specified by a single number) field. For instance, if the space in which the
person and goal, or two objects lie, is a plang, then the scalar fieldis a two-di-
mensional surface. An example s shown in Figure 5.3. Under certain conditions,
this surface is a so-called “potential,’ and the partial derivatives with regard
to the coordinates are the components of force of attraction, with regard to the x
and y axes. Thus, from a single function, the potential, one can immediately
obtain the relevant force quantities. Let ’= potential, then the partial derivative
of P with respect to X ory respectively gives the torees along those coordinates.
Turthar, we may gather these components into a vector, which we call the “grad-
_— _ 2P, ap
irnt)! G =grad P_(Ox , Oy)'

It then follows from the differentiad calculus that a small change in the

potential as we move 2 small distance in the space, is given us by the dot prod-
uet (i.e., lnner product) of this vector and the vector of change of position
in the space:

dP=G.dr where dr= (dx,dy), the vector of changes in x and y. That is,
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In a single dimension, all that was cver considered before, the gradient is
just the derivative of the potential and 1s also therefore equivalent to the foree
itself. The potential and the gradient have many uses in applied mathematics,
even outside physics, especially with regard to optimization and asymptotic
dynamic behavior. This is largely because the direction of the gradient vector
is that of maximal change of the field or surface for any point on that ficld.

At this point we return to Miller’s postulates for more mathematical inter-
pretation. Postulates 1 and 2 imply that the slopes or derivatives of the grad-
ients should be positive in the direction of the goal, and 3 means that the avoid-
ance gradient increases faster than the approach gradicnt near the goal so that
the aversive qualities become stronger, faster as one approaches the goal. Postu-
late 4 asserts that the entire gradient must rise monotonically with positive (¢-g.,
hunger, power, sex) of negative (e.g., fear, hate, disgust) drives respectively. A
special case would be to multiply the gradient by a positive number (> 1) for
cach increase in drive. Postulate 5 simply states that the gradients are affected
by learning. Postulate 6 says that we may simply subtract the gradients at any
point in time Or space 1o learn what the person will do. Ina multidimensional
vector space, we can still subtract vectors. However, a point that is overlooked
in Postulate 6 is that under the traditional interpretation of “gradient,” it is,
as mentioned earlier, defined by forces that are in turn defined by 2 second-
order differential equation (i, it is proportional to acceleration, rather than
velocity). Thus, cven though the gradients may be equal at a particular point
in space giving a resultant force of zero, the velocity may not be zero so in fact
the person is still acting or moving in the real or psychological space. This will
he illustrated mathematically later. Nevertneless, for many purposes, and espe-
cially in spaces with dimension greater than 1, it will suffice to employ first-
order systems. This will be made clear in the following.

It may be helpful to review some basics of differential equations to start
things off. Such a review is located in the Appendix.

LINEAR APPROACII-AVOIDANCE IN ONE DIMENSION

There is considerable value in working out the situation for a linear gradient
in one dimension. For one thing, as noted earlier, Miller (1959) used it, at
least in pictorial illustration. The linear case is readily understood and solvable,
even in the second order case. It is useful pedagogically, particularly because
we learn through it that lineanty may always be natural for the approach-
avoidance problem in general.

We first inspect the single-goal approach-avoidance situation where a per-
son is both attracted and repulsed by a single goal or choice object. Thus,
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her/his choice is basically whether the positive aspects of the goal outweigh
the negative aspects. However, the approach-avoidance th‘cx}l‘c.immcdiatcly
places us in the context of a continuum of response possibilities (e.g., how
far toward the object shall the person go), rather than simply an all-or-none
choice. We feel that this continuum of possibilities or tendencies is really more
descriptive of a person's psychology than the morc traditional all-or-none
depiction. After that, we observe the basic linear dynamics in a two goal-
object situation.

First we outline the mathematical situation which involves only a single

goal-object. The following equations show the approach and avoidance gra-
dients respectively. Let

P(t) = Position of person at time .

G = Position of Goal

4o = Value of positive approach gradient when P=G (ie., force when
goal is reached)

a, =Slope of approach gradient

b, = Value of avoidance gradient when P=0G.

b, =Slope of avoidance gradient

., = Slow-down or effort coefficient

[0 order to best capture the spirit of the theories of Lewin, Hull, and Miller,
all the above parameters, including G, should be nonnegative. P(f), of course,
can be positive or negative. Then the germane dynamic equations are

Ft) = @P(0) = a; —a,[G—P(t)] — ky AP

dar 2 dt
F() = *P) = — [ho— b {G— PO + &, dP(0)]
i 2 dt

Where &/ and £~ are the forces (gradients) that would determine behavior
if only the positive or negative influences respectively were present. Let us
first analyze (@, —a,(G—P(1))] for /7, the term — (b —b(G=P(1))] for F~
is comparable. Already we come upon some awkwardness of the linear ap-
nroach. Note that the intercept, when P(r) =0, is a,—a,G so it has to be 2
function of the coefficient g, as weil as the position of the goal G. This is
required so that f7 can increasc as P approaches G as stipulated in the
postulates. The coefficient a, gives the slope of ascent. S0 if ap—a,G>0 as
we ordinarly assume and if P(0) =0 and %—f@)
ing position and velocity are both zero, then the initial force and movement
are toward G (neglecting £/ for thir moment) and the positive force increases
as P approaches G. When P(1) > & as will eventually oceur, F* becomes even
larger and goes off to infinity. This is absurd, needless to say, s0 we must

build in a threshold terminator o 2 much more complex mechanism so that
the person stops On reaching the o

= 0 indicating that the start-

ol (Thus, a nonlinearity intrudes in spite
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of the initial linearity.) But, such mechanisms are very common in the ap-
plication of differential equations. We shall neglect the expression for that
goal-reached stop function in this presentation.

However, we do want to include a term for slow-down (deceleration)
that might be due to mental or physical effort and the pertinent one is

—ky dP(1)

TR the velocity. For simplicity we assume it operates the same way

in F* and F. Observe further that it opposes the direction of movement

whatever it is when &, >0. (That is, —Tk’ ggf-{z < 0 if velocity is forward

and vice versa if dP(n) <0

at
The typical drawings of the gradients, as in Fig. 5.4 dP(t) for which we
dr
would require an additional coordinate. Because we assume %l =0atr=0

the early behavior is determined primarily by P(r), so this does not do any
real harm. The major effect of :zk—’ Q%Q, from our point of view is on

behavior around a point of equality, when F*(f) = F(f) as we shall ses shortly.

Note that the equations are in the second degree so that we are effectively
talking about force (without the precisely defined units to which physies is
privileged). Figure 5.4 schematizes the gradients. We do not lose any general-
ity by assuming that the person starts at the origin as noted and moves toward
or away from the goal, G. There are good a priori reasons as well as experimen-
tal evidence that the avoidance gradient should ordinarily be steeper than the
approach gradient as postulated, (a, < b,, see following discussion) but there
might be pathological cases where this would not be true. The point of in-
tersection of the two gradients will also depend on the environmental and

psychological circumstances. The overall resultant force is determined by the
sum of the positive and negative gradients, that is,

F=F +F =(ay—bo) ~ (b, - a)P(t)—(a, - b)G =k, — k, P(1);
ko= a, — bo —(a, — bx)G; k,=b,-a,

Obviously postulates 1, 2, and 3 are easily captured in our model. Postulates
4 and 5 are implemented by assuming that the intercept and or slope
parameters d,, a,, and b,, 0, are increasing functions of drive and learning.
Miller gives no guidance as to whether the intercept or slope or both should
be affected by either drive or learning. If we look to Hull, drive and learning
should multiply the entire gradient equation and therefore affect both. In any
event it is clear we can embed sufficient structure in our model to incorporate
all the postulates.

Now, assume &, >0 and let &, =0. That is, the avoidance slope is sharper
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F1G. 54. Atypical single-goal approach-—avoidance conflict situation where
the person is both attracted to and repelled by @ single-goal. The (linear)
approach (+)and avoldance (-) gradients show, rospectively, the forces
that would appty if only positive or negative influences wera present, See
text for further discusslon.

than that for approach and there is no slow-down due to effort. Using stan-
dard techniques, W€ find that the general solution to this case (e.g., see
Luenberger, 1979) is

P(t)= [}, cos Wi+ B, sin wi + % where f, and {33 must be
1

determined by the initial conditions and w=\Vk.. duppose that the initial

velocity (.., the first derivative) is zero. Then the pertinent solution is
_ ¢k .
P()= {7} (1-cos wI)
vl
and we see that the person ascillates around the noint of maximal conflict,

that is, where the two gradients arc equal. The frequency of oscillation is given
by \/k, and the amplitude by

(ko/m\ = \((J—”°‘b°) - (@ =0)G

b, - ay
[f the amplitude exceeds the distance from the crossover point to the goal,
then we would expect the person to absorb (i.c., choose, etc) at the goal,
presumably getting both the goodies as well as the baddies associated with
the goal. Figure 5.5 illustrates the waveform of oscillation and below that,
the point of ascillation, in the dimension of actvity.



Now let £;#0. The most intuitive version is with k:>0, that is, a cost
associated with “movement.” We find that if O0< ki< Vdk,=2Vb, —a, then
oscillation still results but the magnitude of this oscillation decreases to zero

and ultimately the person goes to a point (ko/k,) at which F* =F- and stops.
The solution in the latter case is given by

. Aot At
Piy=R 4 e ve e
1

where &, and 4, are as above, and

X = ~ky +/ k3 — 4k,

- 9
- —ky =/ K3 - 4k,
- 5

Actually, the oscillations around (ko/ ki) converge to zero in magnitude as ¢
approaches infinity. Note that for 0< (k,/k,)< G, the point of equilibrium
(ko/ k) lies between the start position and the goal.

The unusual case where the approach gradient is steeper than the avoidance

gradient can be studied in the aforcmentioned model also. Miller (1959, p.
222) discussed this possibility. In addition to material not directly related to
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approach-avoidance, Miller went on to discuss matters of displacement of
aggression and stimulus generalization. These arc interesting and will be pur-
sued elsewhere. Here we consider generalizations to two-goal situations and

then some elementary approach-avoidance dynamics in higher dimension.

LINEAR DOUBLE APPROACH-AVOIDANCE
IN ONE DIMENSION

Suppose a person faces the dilemma of two choice objects, cach with its own
positive and negative attributes. What does he/she do? This environment can
be pictured as in Fig. 5.6 where the person starts at the origin again and on
the right lies Goal 1 and on the left Goal 2. The prototypical case is shown
there with the avoidance gradients being stecper than those for approach and
with the approach gradient starting higher. Again ignoring the slow-down
term governed by k: for simplicity, the two sets of resultant dynamic equa-
tions pertinent to the two goals G, and G are

Fg,= L0 = ko= ki PO

where ko = do —bo + (b —a)Gy

k[ - bl _al
and -
P
Fg,= S5 =b— I PO)

where 1y = co—do+ (di =€)
11 - dx —Cy

and the parameters in F_ { unction exactly analogously to their counterparts
in F5, but with respect to G, to the left of the start position. Overail then,

F= FGl + FG:
"1': (,ko‘lo) - (kx *h)P([)

and the several solutions arc obtained in the same way as before. In particular
the person will go to Gy, g0 10 G, or end up at a point of positive and negative
gradient cquality in the event that the point of maximum conflict lies be-
(ween (G, and G, and if the excursion of any oscillation does not hit G, or G..

‘Thus, the range of qualitative behavior is like the single approach-avoidance
case but the actual movements now depend on two rather than one goal and
the related attractive and repulsive aspects of those two goals.

We next move to the two dimensional choice domain, that is, when the
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FORCE

———

Gp 0 Gy
=goal 2 =start =goal 1

FIG. 56, An example of approach (+) and avoidance (-) gradlentsin a
doubla-goal situation where each has baoth positive and negative attributes.
As in the single-goal situation, the avoldance gradients are steeper than
the approach gradients, and the approach gradients start highaer.

choice space is the plane. At this point, the linear model becomes rather cum-

brous so we elect to adopt a more general approach and then discuss some
nonlinear special cases of interest.

MULTIDIMENSIONAL AP PROACH-AVOIDANCE
BEHAVIOR

We shall stay within the context of two dimensions, but the formalisms can clear-
ly be immediately generalized to arbitrary finite dimensions. We require more
structure now and therefore introduce the following new set of assumptions.

Assumptions for Multidimensional Approach-Avoidance

1. The vector representing approach toward a single goal should point
directly toward that goal and a vector representing avoidance of a single goal
should point directly away from that goal.

7 We define a potential that is a decreasing function of distance from
a goal, p(d).

3. We then extract a gradient from that potential by taking the partial
derivatives of the potential with respect to the two dimensions, x and y; that
15 OF dP
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4. The gradient will then be a vector whose components represent the

tendency toward or away from the goal on the two dimensions; that is

ap AP
g =557 -5;)-
5 The length of the gradient vector gives the overall strength of approach

or avoidance from the present location, p; thatis if V= Valence or strength,

@ 0Dy
V= (—5‘%4(8)1)

6#" The length (magnitude) of the gradient vector is a decreasing function
of distance from the goal.

7. “Approach” in a given environment and person is defined by a family
of gradients that point toward a goal and «Avoidance” is another family of
runctions that point away from the goal. To avoid triviality, we assume that
motivational circumstances range from the case where approach always
dominates, where avoidance always dominates, and where they cross. Where
they cross corresponds as usual to a point of maximum conflict. The total
gradient is given by the sum of the constituent gradients.

[n most circumstances these assumptions will be sufficient to guarantee
+hat there exists a point of equality of approach and avoidance for a single
goal, and along 2 single line connecting the present location to the goal, and
without consideration of other goals, that such a point be unique. This usually
follows from the fact that the numerical difference of the approach and
avoidance gradients will be an increasing function of distance This function
would go from a negative quantity through zero (the point of maximum con-
flict) on to positive quantitics as distance increases from zero to large values.

Assumption 1, besides seeming psychologically reasonable, avoids messy
mathematical expressions and certain complicated and mystifying behavior.
For instance, cases might arise where approach equals avoidance on the two
dimensions at different distances, which generally precludes
the gradients and thus a point of maximum conflict.

The second assumption links up the present development with classical
nhysics and says how the potential, which <tands for a sort of primitive striv-
ing (akin to m/d, the attractive potential between two objects in physics, where
= product of the tw0 Masses and d = distance) toward or away from a goal.
1 following assumption states that we can find the components of striving
on exch dimension by taking the derivative of the potential with regard to
cpch dimension. The next, number &, simply puts the result into vector form
and defines it as the gradient. The fi fth assumption defines an overall valence
a5 the magnitude (or length) of the gradient vector whereas the sixth requires
thot 14, too, be i decreasing function of distance. The latter condition is not
pmnlied by Assumption 2, as <in e goen by ils eXPIoSSIOn.

a cross-over of

m
Tt



5 APPROACH-AVOIDANCE 123

Assumption 6 is starred(®) because it scems more optiona%- In a sense,
Assumption 6 demands that the actual “movement”’ incrf:asc m_vclodty as
one approaches the goal. To the extent that motor control in pllysx@ motion
is ignored, this might make sensc (and occurred in the one-dimensional purc
approach situations discussed earlier in the lincar systems examples). Other-
wise, it is acceptable to permit the velocity (or force) to go to zero as one
gets very close to the goal, as would happen in a smooth dynamical system
acting in real time and space. Note that the more primitive notion of a gra-
dient that increases as one approaches the goal, can be preserved even when
the organism slows down in approaching it.

Interestingly, it turns out to be a little tricky to come up with a class of
functions obeying all seven assumptions. Let the goal G be at the origin G=0.
Later examples flout Assumption 6, but a two-dimensional family of func-
tions that will satisfy all seven is given by the system of dif ferential equations,

dx = —axe?= "
dt O +4)?

dy = :E.M where b > O.

dt (x*+y)*
Composing this system into a velocity vector we can then write

2Cey) = =d € (x,y) = RD) (x,y), with FD) a decreasing function
e+ 7

of distance D and (x,y) the current position vector. The vector g(x y):

1. Points directly toward (a > 0) or away (a<0) from the goal G=(0,0).
2. Comes from a potential p(D) =%——'5 exp(b/D)—where D equals x* + 7,

that is, the euclidean distance squared, from the goal. This function p(D)
is a decreasing function of distance from the goal.

3 If we write a single approach-avoidance conflict situation as

2 (%)) — gul,y) = (@& L ceT T} (x,y)
(xr+y)? (x*+yH)?

where ¢ > a and d > b, then there exists a unique set of points of maximum
conflict where approach tendency cquals avoidance tendency, approach
dominates beyond that point and avoidance dominates when the organism
is closer to the goal than that point. These points all satisfy x* +y* = — {1/
(d—b)} - log(a/c).

4. The magnitude of the gradient as well is a decreasing function of distance
from the goal.
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We next use a less complex gradient that satisfies all the stipulations ex-
cept number 6 and in several special cases, cven that one Consider the potential
p=a/(+y*+0). By differentiation, we then get the gradient (dx/dtdy/df) =
(= 2ax/(x*+y* + b)Y}, — 2ay/(xC +y1 + b)*) where we can immediately absorb the
«2m into the constant “g". The magnitude (length) of gradient vector is not
monotonic decreasing inVD = V@ + y'unless b = 0, violating Assumption
6, but we need the b when approach-avoidance conflict is present in order
to produce a Cross-over of the positive and negative gradients. A scparate
potential 1 used to construct approach and avoidance gradients. The approach
and avoidance gradients arc added to produce the net gradient

—axX X —-ay

N SESSN S SRR S
iy i0r (Bryradl @Yoy o + 7 +ap

The first example is of & single goal approach-avoidance situation. Asin
the other two-dimensional models, we let the single goal be placed at the origin
G =(0,0). Figure 5.7a shows the way in which the gradient vectors point at
different locations of the display. (The longer arrows will be discussed later.)
[t can be seen that they all point toward or away from the goal (0,0) as they
should. Figure 5.7a is known as & direction ficld because it gives the direc-
tion of the gradients but not their magnitude. If that were also shown, In
the present case, they would increase in length as the origin is approached
from far away in the display but peak and then drop toward zero length close
to the goal. This nonmonotonicity is because of violation of Assumption 6;
if that were satisfied, then he vectors would increase in magnitude all the
way to the goal.

Also shown in Fig. 5.7a are several “phase portraits” (plots) indicating the
paths taken from various starting points. “Phase portrait” is simply a con-
ventional name of a picture of the trajectory (or path) that the dynamic bocv
(in our case, a person) takes through the space. The word “phase” has no
particular relevance for us in the present context. Note that the trajectories
line up with sets of direction vectors and that time is implicit and invisible.
Also note that a set of equilibrium points surrounds the goal at points ot
maximum conflict. Close to the goal, avoidance dominates and the organism
moves toward the circle of cquilibrium points. On the other side of the circle,
approach dominates and the organism is predicted to move toward it. Because
velocity is continuous and goes to Zero at the set of equilibrium points, that
sof is never actually met in rinite time, only approached. Such an approach
is depicted in Fig. 5 7t where we watch coordinate x approach the particular
equilibrium point o which it is attracted, as a function of time and from
two approach and two avaidance starting values.

We next o to a double coul approach-avoidance environment. Here it suf-
fices to use the two goals (71 —(0,0) and G2=(-1,0). No loss of generality
s antailed by lettng bothy coal components be 0. We may illustrate the

dnamites veith o 111(\(,‘.1_‘1 also 1‘)'(W:;j.'ﬂ!1'.1 .‘\Sﬂklmpli()ﬂ A hy senting the h-pﬂmmcacr
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FIG. 57. (a) Direction fiald and sevaral phasa portraits, corresponding to
different starting polnts, of a single goal approach—avoldance situation. The
dotted circle represents a set of equilibrium points. (b) A plot of the position
x, 2 a function of time. The sofid lines are examples of starting points greatar
than the equilibrium polnts and thus x, is “approaching” the goal, whereas

tho dashed lines are for starting polnts close to the goal-—inside the circle—
so thase are “avoiding” the goal.

equal to zero. Also let a=1 for simplicity. Now the gradient of approaci

toward Gl is g:(x,») =( —x —Y , and that of approach toward
g1(x,¥) W+ﬁ‘w+ﬁ9 PP
G2 is ga(x,y) = = (x = A) , —
&) = (G Ay + 7 ' (—A) + )
found by adding the two:

). The overall gradient is

g = -Xx (x—A) -y -Y '
p= b = G ey 2T B AT

The gradient vector field appears in Fig. 5.8 and now it can be seen that
the vectors often point in directions intermediate between the two goals.
However, the closer the organism is to one of the goals, or if one lies entirely
to the right or left of both goals, the more directly the vector points towar
the nearest one. Several phase plots are given in Fig. 5.8 and the geometri
fact that the direction field vectors are tangent to a phase portrait solutio!
harnmes ohvious: (Fig. 5.7a is a special case where any solution is a straigh
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gld (short arrows) and several { phase plots (long
n situation,

{ine so that all tangents lie exactly on it). Yet ano r feature of Fig. 5.8 is
the line through the graph, separating the quahtatwe types of activity; it is
xnown for this reason as a' scparamx ' That line happens tO coincide with
the y-axis with this illustration, but in general would not. If a person were
to start exactly on this line, he would never move, but rather like a penduium
balanced at the top of its swing over its pivot, any slight perturbation would
cause immediate movement toward the strongest attracting goal.

The final example is a double avoxdancc-avoxdance situation in which both
goals are aversive, with no redecming aspects. 1 The qualitative theory of Lewin
suggests that given the chancs, the person will attempt to escape the arca close
to the aversive objects mentally or physically, as the case may be& We shall
see that exactly this is predicted by Our mathematical dynamics. The ap-
propriate gradient is given by the equations for the qpproqch—apprmch casc
but with the signs of the vector components ¢ all reversed. Figu e 5.9 illustrates
the dircction field and some pnase plots.

Ohserve that the vectors generally point away from the ncgative goals and
suggest that 2 person will leave the field proximal to these goals. The phase
portrmt paths supcnmpu:,cu on the direction field confirm this susplcxon
It is interesting that when the person is on the line joining G1 and G2, she
cannot cscapc and must cither come to rest at the best possible distance {rom

both (as in the present case) or oscillate forever between them. This set of

—

polnts is unstable, for any tiny dxsplaamgm off of this line will propel
organism out of the immediate field.

4\.
[9 8§
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FIG. 69. Gradlent vector flold and several phase plots of & double-goal
avoldance—avoidance conflict situation.

Related Theqries

Two theories that use dynamic models to describe decision and choice are
Atkinson and Birch's (1970) “dynamics of action” theory and Grossberg’s
(1978, 1980) competive systems theory. Both theories describe the dynamics
of choice behavior by systems of differential equations. What is unique about
the present work is the inclusion of the goal gradient hypothesis into the
dynamics—the idea that intensity of motivation is a function of the distance
from the goal. Although this idea could be built into the previous two models
through attentional mechanisms or other means, this was not explicitly con-
sidered, and the present chapter appears to provide the first formal treatment.

Aside from the goal gradient structure the present theory does not fit readily
into the competitive system framework (Grossberg, 1978, 1980). One reason
is that the latter views each unit as an entity that competes through dynamic
coupling with the other unit. This produces a system of differential cqua-
tions in the various units. In our system, by way of contrast, the gradients
sum for an arbitrary position on the part of a single “unit.” This results in
a single dif ferential equation driving the dynamic behavior of the “Unit” (read
person or decision mechanism). Atkinson and Birch (1970) also treat their
“sction tendencies” as separate entities that get integrated before COmparison.

Nevertheless, one way to try to place an approach like ours into such 2
competitive system framework might be the following. Consider the double
goal problem on 2 line, with a starting position at P(0)=0, and the goals
located at —G and G. The attractiveness of each alternative at any point in
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time can be represcnted by the variables xi(f) =P(0)/G and xi(f) = = P(0)/ G,

where P(f) is the position at time £. According to Grossberg (1980, p. 382)

this two alternative system is a competitive system if %—- dgrl < 0, and
A

d

——

P %1 < 0. According to our one dimensional double goal model F' = &,
1

—koP() and &k, >0. If it is assumed that Fz%?m =—C-’f%&l then
g d

— -

x, (f) = k>0, which fails to satisfy the competitive property.
dxy dx

More recently, Grossberg and Gutowski (1987) proposed a rather differcnt
dynamic model of risky decision making called affective balance theory. There
are two major differences between our approach-avoidance theory and af-
fective balance theory. First the latter does not incorporate the goal gradient
hypothesis. Second, according to approach-avoidance theory, the competing
forces produced by each alternative are processed in parallel and combined
at each moment in time, but according to affective balance theory, the alter-
natives are processed sequentially. The forces for the first alternative are in-
tegrated over time, and the integrated value is compared to the value of the

second alternative. Among other consequences this leads to different predic-
tions concerning decision time.

WHITHERTO NEXT?

There are many directions worth following up along the lines initiated earlicr.
Some of these are listed here

1. Most experiments directly pertinent to the tencts of this theory have
been done with rats. [t is important to expand the studies to the human domain
and specifically to be able to use negatively valenced goals that are in truth

aversive to the subject, yet are harmless.

2. Among a number of particular domains of application in the social

sciences, a natural and compelling one is risky decision making; that is, deci-
sion making when outcomes arc uncertan and may be associated with various
consequences. This has been a region of high priority in utility theory. We
suggest that dynamic approach-avoldance theory can make a contribution
here (cf. Townsend & Busemever, 1987,

3. 1n addition to refining and testing the theory in more numerically ori-
ented ways with new data, it is of terest to generalize the ideas with mathe-
matical structure not limited to cuciidean vector spaces or cven orthogonal
coordinate spaces. Thus, investigations into manitold theory would seem ap-
propriate (2., see Irwin, 1980) a5 would topological dynamics based on con-

rinuity and the noton of a metne B ditterentability (ey., see Sibirsky,
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1975). Possibly less dramatic but of high importance would be the implementa-
tion of the qualitative theory of differential equations, particularly general
notions of stability and limit cycles.

4. Related to (3) yet critical in its own right, is the investigation of probabil-
istic (read stochastic) versions of the theory. Although this must be undertaken
in the near future, we believe that the deterministic theory should be developed
first or at least in parallel with the stochastic theory, We suspect that something
deterministic lies at the bottom of the behavior, a skeleton as it were, that
is fleshed out by stochastic properties. Different versions of the stochastics
can yield vastly different types of behavior, though the underlying skeleton
is the same. Psychologists rarely have much to go on in deciding what stochas-
tic structure should apply in any given milicu. Alternatively, the stochastic
appearance of much human behavior could be due to deterministic, but cha-
otic underpinnings (sce, e.g., Devaney, 1986).

5. It may be that approach-avoidance theory has something to offer prac-
tical decision making theorizing. Although utility theory and statistical deci-
sion making can represent negative vs positive gains, it may be that the emo-
tional and motivational aspects of many, if not most, important decisions
can best be captured by our type of theory. Certainly the time-dynamic charac-
ter would seem valuable in accurately describing real-life decision behavior,
Close in conception would be the application of these ideas in robotology
and artificial intelligence, especially in situations where a mimicking of human
motivational properties is desired. This in turn could help to link up goal-
directed behavior in computers or robots with the burgeoning field of neural
modeling and neural computation.
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APPENDIX
ASPLECTS OF DIFFERENTIAL EQUATIONS

Order of a Differential Equation

A differential equation describes the dynamics of a body (object, idea, ¢ic.)
by way of its denvatives, We may metaphorically think, in our case, of the
first derivative 25 beine “like” a velocity, the second as being like an accelzra-
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tion and so-on. The “order’” of a differential equation is the highest derivative
appearing in the equation. An example of a sccond-order differential equa-
tion 1s

P = (sin ) = +2 )
The independent variable is time = ¢ and the dependent variable is x, usually

a position in some one-dimensional space (e.g., taken with respect to a goal
in our situation).

Linear versus Nonlinear Differential Equations

A “linear differential equation” is one where all of the terms are linear com-
binations of the dependent variable and its derivatives, possibly plus a term
not involving the dependent variable. The coefficients of these dependent
variable terms can in general be functions of the independent variable, as
can the extra term that does not involve the dependent variable. An example
of a second order linear differential equation is

d&x _ , 3dx (2)
== = = (.

rldt’ tdt +logr+1

Note that it is okay for the equation to possess nonlinear functions of the
independent variable. It follows from the aforementioned that a nonlinear
differcntial equation must have at least one nonlinear function of the depen-
dent variable or one or more of its derivatives. Two examples are the following:

(Exyp - s (32)
dx _
6@ — Log(x) =0 (3b)

In the first, the second derivative is squared, a nonlinear operation and in
the second, onc finds Log(x), also a nonlinear operation. Equation 1 from
earlier, is also nonlinear because sin(x) is nonlinear in x.

Homogeneous versus Nonhomogeneous
Differential Equations

A “homogenecous differential equation’” is one where terms not involving the
dependent variable are absent. Equivalently, terms involving only the indepen-
dent variable or constants are lacking. If it is present, then we have a “non-
homogeneous differential equation.!” This extra term is usually thought of
as a forcing function that serves as an input to the system; that is, it “drives”
the system. Thus, in contrast, a homogencous differential cquation describes



a system whose entire behavior from a particular point in time is determined
by where it starts and the initial values of certain of its derivatives, A
nonhomogencous system must in general include influences both from the
forcing function as well as initial values. An example of a homogeneous dif-
ferential equation is that of Equation 3b. Equation 1 has a forcing function
given by the number “2"” and Equation 3a by 5v/7 so both of these are
nonhomogencous. (How about Equation 2?).

The behavior of a linear system (i.e., a system defined by linear differential
cquations) can always be determined by adding the solution for the general
homogencous cquation to a particular solution obtained with the forcing func-
tion present, but with all pertinent initial values set to zero.

Transient versus Asymptotic Behavior

We can also ask about the short term behavior of a system as well as how
it acts as the duration under observation increases without limit, We may point
out that while an elegant general theory of linear systems exists that perfectly
describes both transient and asymptotic behavior, the only reasonably general
theory that applies to large classes of nonlinear systems pertains to asymp-
totic behavior. Further, suitably defined “stable’” linear systems have the prop-
erty that the equation describing their behavior can be decomposed into a
set of transient terms (i.e., terms that die out, that is go to zero) plus a set
of asymptotic terms (i.e., give the position to which the system converges).

Systems of Differential Equations

When there is more than a single output of a system, or it is operating in
a multidimensinoal space, as in our more general cases, a set of differential
cquations is needed. For instance, in the plane, we would ordinarily see a
system of two differential equations, which may be generally written as

d'__]_v?': :ﬂxv},vgi_d_y_y[)) @ = g(x’yQQ‘,g‘!’[) (4)
ar dt dt dt? dar dt

when we have 2 second order system.
A general first order two-dimensional system would be written,

dx = flx.y,), dy = g(x.,0) (5)
dr dr

Observe that f and g may in general be nonlinear and nonhomogeneous.
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