CHAPTER 38

The Ultrastable System

8/1. Our problem, stated briefly at the end of Chapter 5, can
now be stated finally. The type-problem was the kitten whose
behaviour towards a fire was at first chaotic and unadapted,
but whose behaviour later became effective and adapted. We
have recognised (S. 5/8) that the property of being adapted’
is equivalent to that of having the variables, both of the animal
and of the environment, so co-ordinated in their actions on one
another that the whole system is stable. We now know, from
S. 6/3 and 7/8, that an observed system can change from one
form of behaviour to another only if parameters have changed
value. Since we assumed originally that no deus ex machina
may act on it, the changes in the system must be due to step-
functions acting within the whole absolute system. Our problem
therefore takes the final form : Step-functions by their changes in
value are to change the behaviour of the system ; what can ensure
that the step-functions shall change appropriately ?  The answer is
provided by a principle, relating step-functions and fields, which
will now be described.

8/2. 1In S.7/8 it was shown that when a step-function changes
value, the ficld of the main variables is changed. The process
was illustrated in Figures 7/8/1 and 7/8/2. This is the action
of step-function on field.

8/3. There is also a reciprocal action. Fields differ in the rela-
tion of their lines of bchaviour to the critical states. Thus, if
a rcpresentative point is started at random in the region to the
left of the critical states in Figure 8/3/1, the proportion which
will encounter critical states is, in I—1, in II—0, and in III—
about a half. So, given a distribution of critical states and a
distribution of initial states, a change of field will, in general,
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Figure 8/3/1: Three fields. The critical states are dotted.

change the proportion of representative points encountering
critical states.

The ultrastable system

8/4. The two factors of the two preceding sections will now be
found to generate a process, for each in turn evokes the other’s
action. The process is most clearly shown in what T shall call
an ultrastable system : one that is absolute and contains step-
functions in a sufficiently large number for us to be able to ignore
the finiteness of the number. Consider the field of its main
variables after the representative point has been released from
some state. If the field leads the point to a critical state, a
step-function will change value and the field will be changed.
If the new field again leads the point to a critical state, again
a step-function will change and again the field will be changed ;
and so on. The two factors, then, generate a process.

8/5. Clearly, for the process to come to an end it is necessary
and sufficient that the new field should be of a form that does
not lead the representative point to a critical state. (Such a
field will be called terminal.) But the process may also be de-
seribed in rather different words: if we wateh the main variables
only, we shall sec field after field being rejected until one is
retained : the process is selective towards fields.

As this selectivity is of the highest importance for the solution
of our problem, the principle of ultrastability will be stated
formally : an ultrastable system acts selectively towards the fields
of the main variables, rejecting those that lead the representative
point to a critical state but retaining those that do not.

This principle is the tool we have been seeking ; the previous
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chapters have been working towards it : the later ehapters will
develop it.

8/6. In the previous sections, the eritical states of the step-
functions were unrestricted in position ; but such freedom does
not correspond with what is found in biological systems (S. 9/8),
so we will examine the behaviour of an ultrastable system whose
critical states are so sited that they surround a definite region
in the main-variables’ phase-space. (At first we shall assume
that the main variables are all full-functions, though the defini-
tion makes no such restriction. Later (S. 11/8) we shall examine
other possibilities.)

8/7. The simplest way to demonstrate the properties of this
system is by an example. Suppose there are only two main
variables, 4 and B, and the critical states of all the step-functions
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I'icure 8/7/1: Changes of field in an ultrastable system. The critical
states are dotted.

are distributed as the dots in Figure 8/7/1. Suppose the first

field is that of Figure 8/7/1 (I), and that the system is started

with the representative point at X. The line of behaviour from
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X is not stable in the region, and the representative point follows
the line to the boundary. Here (Y) it mecets a critical state
and a step-function changes valuc; a new ficld, perhaps like II,
arises. The representative point is now at Y, and the line from
this point is still unstable in regard to the region. The point
follows the line of bchaviour, meets a critical state at Z, and
causes a change of a step-function: a new field (ITI) ariscs.
The point is at Z, and the ficld includes a stable resting state,
but from Z the linc leads further out of the region. So another
critical state is met, another step-function changes value, and
a new field (IV) arises. In this field, the line of behaviour from
Z is stable with regard to the region. So the representative
point moves to the resting state and stops there. No further
critical states are met, no further step-functions change value,
and therefore no further changes of ficld take place. From now
on, if the field of the main variables is examined, it will be found
to be stable. If the critical states surround a region, the ultra-
stable system 1is selective for fields that are stable within the region.

(This statement is not rigorously true, for a little ingenuity
can devise fields of bizarre type which arc not stable but which
are, under the present conditions, terminal. A fully rigorous
statement would be too clumsy for use in the next few chapters ;
but the difficulty is only temporary, for S. 13/4 introduces some
practical factors which will make the statement practically truc.) -

The Homeostat

8/8. So far the discussion of step-functions and of ultrastability
has been purely logical. In order to provide an objective and
independent test of the reasoning, a machine has been built
according to the definition of the ultrastable system. This
section will describe the machine and will show how its behaviour
compares with the prediction of the previous section.

The homeostat (Figure 8/8/1) consists of four units, cach of
which carries on top a pivoted magnet (Figure 8/8/2, M in
Figure 8/8/3). The angular deviations of the four magnets from
the central positions provide the four main variables.

Its construction will be described in stages. Each unit emits
a D.C. output proportional to the deviation of its magnet from
the central position. The output is controlled in the following
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Ficure 8/8/1: The homeostat. ILach unit carries on top a magnet and
coil such as that shown in Figure 8/8/2. Of the controls on the front
pancl, those of the upper row control the potentiometers, those of the
middle row the commutators, and those of the lower row the switehes S
of Figure 8/8/3.

Ficure 8/8/2: Typical magnet (just visible), coil, pivot, vane, and water
potentiometer with eleetrodes at cach end.  The coil is quadruple, eon-
sisting of 4, B, C and D of Figure 8/8/3.
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way. In front of each magnet is a trough of water; electrodes
at each end provide a potential gradient. The magnet carries
a wire which dips into the water, picks up a potential depending
on the position of the magnet, and sends it to the grid of the
triode. J provides the anode-potential at 150 V., while I is at
180 V.; so I carries a constant current. If the grid-potential
allows just this current to pass through the valve, then no current
will flow through the output. But if the valve passes more, or
less, current than this, the output circuit will carry the difference
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Ficure 8/8/3: Wiring diagram of one unit. (The letters are explained
in the text.)

in one direction or the other. So after I is adjusted, the output
is approximately proportional to J’s deviation from its central
position.

Next, the units arc joined together so that each sends its
output to the other three; and thereby each receives an input
from each of the other three.

These inputs act on the unit’s magnet through the coils A4,
B, and C, so that the torque on the magnet is approximately
proportional to the algebraic sum of the currents in 4, B, and
C. (D also affects MM as a self-feedback.) But before cach
input current reaches its coil, it passes through a commutator
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(X), which determines the polarity of entry to the coil, and
through a potentiometer (£”), which determines what fraction of
the input shall reach the coil.

As soon as the system is switched on, the magnets arc moved
by the currents from the other units, but these movements change
the currents, which modify the movements, and so on. It may
be shown (S. 19/11) that if there is sullicient viscosity in the
troughs, the four-variable system of the magnet-positions is
approximately absolute. To this system the commutators and
potentiometers act as paramecters.

When these parameters are given a definite set of values, the
magnets show some definite pattern of behaviour ; for the para-
meters determine the field, and thus the lines of behaviour. If
the ficld is stable, the four magnets move to the central position,
where they actively resist any attempt to displace them. If
displaced, a co-ordinated activity brings them back to the centre.
Other parameter-settings may, however, give instability ; in
which case a ‘runaway ’ occurs and the magnets diverge from
the central positions with increasing velocity.

So far, the system of four variables has been shown to be
dynamic, to have Figure 4/12/1 (A) as its diagram of immediate
effects, and to be absolute. Its field depends on the thirty-two
parameters X and P. It is not yet ultrastable. But the inputs,
instead of being controlled by parameters set by hand, can be
sent by the switches §' through similar components arranged on
a uniselector (or ‘stepping-switch’) U. The values of the com-
ponents in U were deliberately randomised by taking the actual
numerical values from Fisher and Yates’ Table of Random
Numbers. Once built on to the uniselectors, the values of these
paramecters are determined at any moment by the positions of
the uniselectors. Twenty-five positions on each of four uni-
selcetors (one to cach unit) provide 390,625 combinations of
parameter-values. In addition, the coil G of cach uniselector is
encrgised when, and only when, the magnet M diverges far from
the central position; for only at extreme divergence does the
output-current reach a value sufficient to energise the relay I
which closes the coil-circuit. A separate device, not shown,
interrupts the coil-circuit regularly, making the uniselector move
from position to position as long as I' is energised.

The system is now ultrastable; its correspondence with the
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definition will be shown in each of the three requirements.
Firstly, the whole system, now of eight variables (four of the
magnet-deviations and four of the uniselector-positions), is abso-
lute, because the values of the cight variables are sufficient to
determine its behaviour. Sccondly, the variables may be divided
into main variables (the four magnet-deviations), and step-func-
tions (the wvariables controlled by the unisclector-positions).
Thirdly, as the uniselectors provide an almost endless supply of
step-function values (though not all different) we do not have to
consider the possibility that the supply of step-function changes
will come to an end. In addition, the critical states (those
magnet-deviations at which the relay closes) are all sited at about
a 45° deviation ; so in the phase-space of the main variables they
form a ‘cube’ around the origin.

It should be noticed that if only one, two, or three of the
units are used, the resulting system is still ultrastable. It will
have one, two, or three main variables respectively, but the critical
states will be unaltered in position.
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Ficure 8/8/4 : Behaviour of one unit fed back into itself through a uniselector.
The upper line records the position of the magnet, whose side-to-side
movements are recorded as up and down. The lower line (U) shows
a cross-stroke whenever the uniselector moves to a new position. The
first movement at each D was forced by the operator, who pushed the
magnet to one side to make it demonstrate the response.

Its ultrastability can now be demonstrated. First, for sim-
plicity, is shown a single unit arranged to feed back into itself
through a single uniselector coil such as A, D being shorted out.
In such a case the occurrence of the first negative setting on
the uniselector will give stability. Figure 8/8/4 shows a typical
tracing. At first the step-functions gave a stable field to the
single main variable, and the downward part of I);, caused by
the operator deflecting the magnet, is promptly corrected by the
system, the magnet returning to its central position. At R,
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the operator reversed the polarity of the output-input junction,
making the system unstable (S. 20/7). As a result, a runaway
developed, and the magnet passed the critical state (shown by
the dotted line). As a result the uniselector changed value. As
it happened, the first new value provided a field which was
stable, so the magnet returned to its central position. At D,,
a displacement showed that the system was now stable (though
the return after I, demonstrated it too).

At R, the polarity of the join was reversed again. The value
on the uniselector was now no longer suitable, the field was
unstable, and a runaway occurred. This time three uniselector
positions provided three fields which were all unstable : all were
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Ficure 8/8/5: Two units (1 and 2) interacting. (Details as in Fig. 8/8/4.)

rejected. But the fourth was stable, the magnet returned to
the centre, no further uniselector changes occurred, and the
single main variable had a stable field. At Dy its stability was
again demonstrated.

Figurc 8/8/5 shows another experiment, this time with two
units interacting. The diagram of immediate effects was 1 2
the effect 1 — 2 was hand-controlled, and 2 — 1 was uniselector-
controlled. At first the step-function values combined to give
stability, shown by the responses to D;. At R, reversal of the
commutator by hand rendered the system unstable, a runaway
occurred, and the variables transgressed the critical states. The
uniselector in Unit 1 changed position and, as it happened, gave
at its first trial a stable field. It will be noticed that whereas
before R, the upstroke of Dy in 2 caused an wpstroke in 1, it
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caused a downstroke in 1 after I,, showing that the action 2 —1
had been reversed by the uniselector. This reversal compensated
for the reversal of 1 — 2 caused at R,.

At R, the whole process was repeated. This time three uni-
selector changes were required before stability was restored. A
comparison of the effect of D, on 1 with that of D, shows that
compensation has occurred again.

The homeostat can thus demonstrate the clementary facts of
ultrastability.

8/9. In what way does an ultrastable system differ from an
ordinary stable system ?

In one sense the two systems are similar. Each is assumed
absolute, and if therefore we form the field of all its variables,
each will have one permanent ficld. Given a region, every line
of behaviour is permanently stable or unstable (see Figure 7/8/1).
Viewed in this way, the two systems show no essential difference.
But if we compare the variables of the stable system with only
the main variables of the ultrastable, then an obvious difference
appears : the field of the stable system is single and permanent,
but in the ultrastable system the phase-space of the main vari-
ables shows a succession of transient fields concluded by a terminal
field which is always stable, The distinction in actual behaviour
can best be shown by an example. The automatic pilot is a
device which, amongst other actions, keeps the aeroplane hori-
zontal. It must therefore be connected to the ailerons in such
a way that when the plane rolls to the right, its output [must
act on them so as to roll the plane to the left. If properly joined,
the whole system is stable and self-correcting : it can now fly
safely through turbulent air, for though it will roll frequently,
it will always come back to the level. The homeostat, if joined
in this way, would tend to do the same. (Though not well
suited, it would, in principle, if given a gyroscope, be able to
correct roll.) E

So far they show no difference; but connect the ailerons in
reverse and compare them. The automatic pilot would act,
after a small disturbance, to increase the roll, and would persist
in its wrong action to the very end. The homeostat, however,
would persist in its wrong action only until the increasing devia-
tion made the step-functions start changing. On the occurrence
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of the first suitable new value, the homeostat would act to stabilise
instead of to overthrow ; it would return the plane to the hori-
zontal ; and it would then be ordinarily self-correcting for dis-
turbances.

There is therefore some justification for the name ¢ ultrastable ’ ;
for if the main variables arc assembled so as to make their field
unstable, the ultrastable system will change this field till it is
stable. The degree of stability shown is therefore of an order
higher than that of the system with a single field.

Another difference can be seen by considering the number of
factors which need adjustment or specification in order to achieve
stability. Less adjustment is nceded if the system is ultrastable.
Thus an automatic pilot must be joined to the ailerons with care,
but an ultrastable pilot could safely be joined to the ailerons at
random. Again, a lincar system of n variables, to be made stable,
needs the simultaneous adjustment of at least n parameters
(S. 20/11, Ex. 8). If nis, say, a thousand, then at least a thou-
sand parameters must be correctly adjusted if stability is to be
achieved. But an ultrastable system with a thousand main
variables needs, to achieve stability, the specification of about
six factors; for this is approximately the number of independent
items in the specification of the system (S. 9/9). A large system,
then, can be made stable with much less detailed specification
if it is made ultrastable.

8/10. In S. 6/2 it was shown that every dynamic system is
acted on by an indefinitely large number of parameters, many of
which are taken for granted, for they are always given well-
understood ‘¢ obvious’ values. Thus, in mechanical systems it
is taken for granted, unless specially mentioned, that the bodies
carry a zero electrostatic charge; in physiological experiments,
that the tissues, unless specially mentioned, contain no unusual
drug ; in biological experiments, that the animal, unless specially
mentioned, is in good health. All these parameters, however,
are effective in that, had their values been different, the variables
would not have followed the same line of behaviour. Clearly
the ficld of an absolute system depends not only on those para-
meters which have been fixed individually and speeifically, but
on all the great number which have been fixed incidentally.
Now the ultrastable system proceeds to a terminal field which
100
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is stable in conjunction with all the system’s paramcter-values
(and it is clear by the principle of ultrastability that this must be
so, for whether the parameters arc at their ‘usual’ values or
not is irrelevant). The ultrastable system will therefore always
produce a set of step-function values which is so related to the
particular sct of parameter-values that, in conjunction with them,
the system is stable. If the paramecters have unusual values,
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Ficure 8/10/1: Three units interacting. At J, units 1 and 2 were con-
strained to move together. New step-function values were found which
produced stability. These values give stability in conjunction with the
constraint, for when it is removed, at R, the system becomes unstable.

the step-functions will also finish with values that are compen-
satingly unusual. To the casual observer this adjustment of the
step-function values to the parameter-values may be surprising ;
we, however, can see that it is inevitable.

The fact is demonstrable on the homeostat. After the machine
was completed, some ¢ unusual ’ complications were imposed on
it (‘unusual’ in the sense that they were not thought of till
the machine had been built), and the machine was then tested
to see how it would succeed in finding a stable ficld when
affected by the peculiar complications. One such test was
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made by joining the front two magnets by a light glass fibre
so that they had to move together. Figure 8/10/1 shows a
typical record of the changes. Three units were joined together
and were at first stable, as shown by the response when the
operator displaced magnet 1 at D,. At J, the magnets of 1 and
2 were joined so that they could move only together. The result
of the constraint in this case was to make the system unstable.
But the instability evoked step-function changes, and a new
terminal field was found. This was, of course, stable, as was
shown by its response to the displacement, made by the operator,
at D,. But it should be noticed that the new set of step-function
values was adjusted to, or ‘took notice of’, the constraint and,
in faet, used it in the maintenance of stability ; for when, at R,
the operator gently lifted the fibre away the system became
unstable.
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