CHAPTER 7

Step-Functions

7/1. SomeTriMEs the behaviour of a variable (or parameter) can
be described without reference to the cause of the behaviour : if
we say a variable or system is a ‘simple harmonic oscillator’
the meaning of the phrase is well understood. Iere we shall be
more interested in the cxtent to which a variable displays con-
stancy. Four types may be distinguished, and are illustrated in

—TIME—>

Ficure 7/1/1: Types of behaviour of a variable: 4, the full-function ;
B, the part-function ; C, the step-function ; D, the null-function.

Fig. 7/1/1. (4) The full-function has no finite interval of con-

stancy ; many common physical variables are of this type: the

height of thc barometer, for instance. (B) The part-function has

finite intervals of change and finite intervals of constancy; it

will be considered more fully in S. 14/12. (C) The step-function

has finite intervals of constancy separated by instantaneous jumps.
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STEP-FUNCTIONS 7/2

And, to complete the set, we need (1)) the null-funetion, which
shows no change over the whole period of observation. The four
types obviously include all the possibilitics, except for mixed
forms. The variables of Fig. 2/10/1 will be found to be part-,
full-, step-, and null-, functions respectively.

In all cases the type-property is assumed to bold only over
the period of obscrvation: what might happen at other times
is irrelevant.

Sometimes physical entities cannot readily be allotted their
type. Thus, a steady musical note may be considered either as
unvarying in intensity, and therefore a null-function, or as
represented by particles of air which move continuously, and
therefore a full-function. In all such cases the confusion is at
once removed if one ceases to think of the real physical object
with its manifold properties, and selects that variable in which
one happens to be interested.

7/2. Step-functions occur abundantly in nature, though the
very simplicity of their properties tends to keep them incon-
spicuous. ‘ Things in motion sooner catch the eye than what
not stirs’. The following examples approximate to the step-
function, and show its ubiquity :

(1) The eclectric switch has an electrical resistance which
remains constant except when it changes by a sudden
jump. '

(2) The electrical resistance of a fuse similarly stays at a low
value for a time and then suddenly changes to a very
high value.

(3) The wviscosity of water, measured as the temperature
passes 0° C., changes similarly.

(4) If a piece of rubber is stretched, the pull it exerts is approxi-
mately proportional to its length. The constant of
proportionality has a definife constant value unless the
clastic is stretched so far that it breaks. When this
happens the constant of proportionality suddenly
becomes zero, i.e. it changes as a step-function.

(5) If a trajectory is drawn through the air, a few feet above the
ground and parallel to it, the resistance it encounters as it
meets various objects varies in step-function form.
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7/3 DESIGN FOR A BRAIN

(6) A stone, falling through the air into a pond and to the
bottom, would meet resistances varying similarly.

(7) The temperature of a match when it is struck changes in
step-function form.

(8) If strong acid is added in a steady stream to an un-
buffered alkaline solution, the pH changes in approxi-
mately step-function form.

(9) If aleohol is added slowly with mixing to an aqueous
solution of protein, the amount of protein precipitated
changes in approximately step-function form.

(10) As the pH is changed, the amount of adsorbed substance
often changes in approximately step-function form.

(11) By quantum principles, many atomic and molecular
variables change in step-function form.

(12) The blood flow through the ductus arteriosus, when ob-
served over an interval including the animal’s birth,
changes in step-function form.

(18) The sex-hormone content of the blood changes in step-
function form as an animal passes puberty.

(14) Any variable which acts only in ‘ all or none * degree shows
this form of behaviour if each degree is sustained over a
finite interval.

7/3. Few variables other than the atomic can change instan-
taneously ; a more minute examination shows that the change
is really continuous : the fusing of an electric wire, the closing of a
switch, and the snapping of a piece of elastic. But if the event
occurs in a system whose changes are appreciable only over some
longer time, it may be treated without serious error as if it oc-
curred instantaneously. Thus, if @ = tanh ¢, it will give a graph
like A in Figure 7/3/1 if viewed over the interval from t = — 2
to t = + 2. But if viewed over the interval from ¢t = — 40 to
¢ = -+ 40, it would give a graph like B, and would approximate
to the step-function form.

In any experiment, some ‘ order’ of the time-scale is always
assumed, for the investigation never records both the very quick
and the very slow. Thus to study a bee’s honey-gathering flights,
the observer records its movements. But he ignores the movement
caused by each stroke of the wing : such movements are ignored
as being too rapid. Equally, over an hour’s experiment he ignores
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the fact that the bee at the end of the hour is a little older than it
was at the beginning : this change is ignored as being too slow.

Such changes are eliminated by being treated as if they had
their limiting values. If a single rapid change occurs, it is

Time —»
Ficure 7/3/1: The same change viewed: (4) over one interval
of time, (B) over_an interval twenty times as long.
treated as instantancous. If a rapid oscillation occurs, the
variable is given its average value. If the change is very slow,
the variable is assumed to be constant. In this way the concept
of ‘step-function’ may legitimately be applied to real changes
which are known to be not quite of this form.

7/4. Behaviour of step-function form is likely to be seen when-
ever we observe a ‘machine’ whose component parts are fast-
acting. Thus, if we casually alter the settings of an unknown
electronic machine we are not unlikely to observe, from time to
time, sudden changes of step-function form, the suddenness being
due to the speed with which the machine changes.

A reason can be given most simply by reference to Figure 4/3/1.
Suppose that the curvature of the surface is controlled by a para-
meter which makes 4 rise and B fall. If the ball is resting at -,
the parameter’s first change will make no difference to the ball’s
lateral position, for it will continue to rest at A (though with
lessened reaction if displaced.). As the parameter is changed
further, the ball will continue to remain at 4 until A4 and B are
level. Still the ball will make no movement. But if the para-
meter goes on changing and 4 rises above B, and if gravitation is
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intense and the ball fast-moving, then the ball will suddenly move
to B. And here it will remain, however high 4 becomes and
however low B. So, if the paramecter changes steadily, the
lateral position of the ball will tend to step-function form, ap-
proximating more closely as the passage of the ball for a given
degree of slope becomes swifter.

The possibility need not be examined further, for no exact
deductions will be drawn from it. The section is intended only
to show that step-functions occur not uncommonly when the
system under observation contains fast-acting components. The
subject will be referred to again in S. 10/5.

Critical states

7/5. In any absolute system, the behaviour of a variable at any
instant depends on the values which the variable and the others
have at that instant (S. 2/15). 1If one of the variables behaves as
a step-function the rule still applies : whether the variable remains
constant or undergoes a change is determined both by the value
of the variable and by the values of the other variables. So,
given an absolute system with a step-function at a particular value,
all the states with the step-function at that value can be divided
into two classes : those whose occurrence does and those whose
occurrence does not lead to a change in the step-function’s value.
The former are its critical states: should one of them occur, the
step-function will change value. The critical state of an electric
fuse is the number of amperes which will cause it to blow. The
critical state of the ‘ constant of proportionality > of an elastic
strand is the length at which it breaks.

An example [rom physiology is provided by the urinary bladder
when it has developed an automatic intermittently-emptying
action after spinal section. The bladder fills steadily with urine,
while at first the spinal centres for micturition remain inactive.
When the volume of urine excceds a certain value the centres
become active and urine is passed. When the volume falls below
a certain value, the centre becomes inactive and the bladder refills.
A graph of the two variables would resemble Figure 7/5/1. The
two-variable system is absolute, for it has the field of Figure 7/5/2.
The variable y is approximately a step-function. When it is at 0,
its critical state is @ = X,, y = 0, lor the occurrence of this state
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Ficure 7/5/1 : Diagram of the changes in @, volume of urine in the bladder,
and y, activity in the centre for micturition, when automatic action has
been established after spinal section.
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Ficure 7/5/2: Field of the changes shown in Figure 7/5/1.

determines a jump from 0 to ¥. When it is at Y, its critical
state is ¢ = X,, y = Y, for the occurrence of this state determines
a jump from Y to 0.

7/6. A common, though despised, property of every machine is
that it may ¢ break ’. This event is in no sense unnatural, since
it must follow the basic laws of physics and chemistry and is
therefore predictable from its immediately preceding state. In
general, when a machine ¢ breaks ’ the representative point has met
some critical state, and the corresponding step-function has changed
value.

As is well known, almost any machine or physical system will
break if its variables are driven far enough away from their usual
values. Thus, machines with moving parts, if driven ever faster,
will break mechanically ; electrical apparatus, if subjected to
ever higher voltages or currents, -will break in insulation ;
machines made too hot will melt—if made too cold they may
encounter other sudden changes, such as the condensation which
stops a steam-engine from working below 100° C.; in chemical
dynamics, increasing concentrations may meet saturation, or may
cause precipitation of proteins.

Although there is no rigorous law, there is nevertheless a wide-
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spread tendency for systems to show changes of step-function
form if their variables are driven far from some usual value.
Later (S. 10/2) it will be suggested that the nervous system is not
exceptional in this respect.

Systems containing full- and null-functions

7/7. We shall now consider the properties shown by absolute
systems that contain step-functions. But the discussion will be
clearer and simpler if we first examine some simpler systems.

Suppose we have an absolute system composed wholly of full-
functions and we ignore one of the variables. Ivery experimenter
knows only too well what happens : the behaviour of the system
becomes unpredietable. Every experimenter has spent time
trying to make unpredictable experiments predictable ; he does
it by identifying the unknown variable. The unknown variable
may be scientifically trivial, like a loose screw, or important, like
a co-enzyme in a metabolie system ; but in either case, he cannot
establish a definite form of behaviour until he has identified and
cither controlled or observed the unknown variable. To ignore a
full-function in an absolute system is to render the remainder non-
absolute, so that no characteristic form of behaviour can be
established.

On the other hand, an absolute system which includes null-
functions may have the null-functions removed from it, or other
null-functions added to it, and the new system will still be absolute.
(The alteration is done, of course, not by interfering physically
with the ¢ machine ’, but by changing the list of variables.) Thus, if
the two-variable system of the pendulum (S. 6/3) is absolute, and
if the length of the pendulum stays constant once it is adjusted,
then the system composed of the three variables :

(1) length of pendulum

(2) angular deviation

(3) angular velocity)
is also absolute. A formal proof is given in S. 21/4, but it follows
readily from the definitions. (The reader should first verify that
every null-function is itself an absolute system.) Conversely, if
three variables «, I3, N, are found to form an absolute system,
and N is a null-function, then the system composed of 4 and B
is absolute.

Unlike the full-function, then, the null-function may be
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omitted from a system, for its omission leaves the remainder still
producing predictable behaviour.

Systems containing step-functions

7/8. Suppose that we have a system with three variables,
A, B, S; that it has been tested and found absolute; that A
and B are full-functions; and that S is a step-function. (Vari-
ables 4 and B, as in S. 21/3, will be referred to as main variables.)
The phase-space of this system will resemble that of Iigure 7/8/1
(a possible field has been sketched in).  The phase-space no longer
fills all three dimensions, but as § can take only discrete values,
here assumed for simplicity to be a pair, the phase-space is
restricted to two planes normal to S, each plane corresponding to a
particular value of S. .f and B being full-functions, the represen-
tative point will move on curves in each plane, describing a line of
behaviour such as that drawn more heavily in the Figure. When
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Ficure 7/8/1: Field of an absolute system of three wvariables, of which
S'is a step-function. The states from C to C are the critical states of
the step-function.

A

the line of behaviour meets the row of critical states at C—C, S
jumps to its other value, and the representative point continues
along the heavily marked line in the upper plane. In such a field
the movement of the representative point is everywhere state-
determined, for the number of lines from any point never exceeds
one. “

If, still dealing with the same real ‘ machine’, we ignore S,
and repeatedly form the field of the system composed of A and B,
S being free to take sometimes one value and sometimes the other,
we shall find that we get sometimes a field like I in Figure 7/8/2,
and sometimes a field like II, the one or the other appearing ac-
cording to the value that S happens to have at the time.
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The behaviour of the system 4B, in its apparent possession of
two ficlds, should be compared with that of the system described
in S. 6/3, where the use of two paramecter-values also caused the
appearance of two fields. But in the carlier case the change of
the field was caused by the arbitrary action of the experimenter,
who forced the parameter to change value, while in this case the
change of the field of 4 B is caused by the inner mechanisms of the
¢ machine ’ itself.

The property may now be stated in general terms. Suppose,
in an absolute system, that some of the variables are step-functions,
and that these are ignored while the remainder (the main variables)
are observed on many occasions by having their field constructed.

=

AN

B C
Ficure 7/8/2: The two fields of the system composed of 4 and B.
P is in the same position in each field.

Then so long as no step-function changes value during the con-
struction, the main variables will be found to form an absolute
system, and to have a definite ficld. But on different occasions
different fields may be found. T'he number of different fields shown
by the main variables is equal to the number of combinations of
values provided by the step-functions.

7/9. These considerations throw light on an old problem in the
theory of mechanisms.

Can a ‘ machine ’ be at once determinate and capable of spon-
taneous change ? The question would be contradictory if posed
by one person, but it exists in fact because, when talking of living
organisms, one school maintains that they are strictly determinate
while another school maintains that they are capable of spon-
taneous change. Can the schools be reconciled ?
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The presence of step-functions in an absolute system cnables
both schools to be right, provided that thosc who maintain the
determination are speaking of the system which comprises ail the
variables, while those who maintain the possibility of spontancous
change are speaking of the main variables only. For the whole
system, which includes the step-functions, is absolute, has one field
only, and is eompletely state-determined (like Figure 7/8/1). But
the system of main variables may show as many different forms of
behaviour (like Figure 7/8/2, T and II) as the step-functions
possess combinations of values. And if the step-functions are not
accessible to observation, the change of the main variables from
one form of behaviour to another will seem to be spontaneous, for
no change or state in the main variables can be assigned as its
cause.

The argument may seem plausible, but it is stronger than that.
It may be proved (S. 22/5) that if a ‘ machine’, known to be
completely isolated and therefore absolute, produces several
characteristic forms of behaviour, i.e. possesses several fields, then
there must be, interacting with the observed variables and included
within the ¢ machine’, some step-functions.
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