CHAPTER 22

Step-Functions

22f1. A variable behaves as a step-function over some given
period of observation if it changes value at only a finite number of
discrete instants, at which it changes value instantaneously.
The term ° step-function’ will also be used, for convenience, to
refer to any physical part whose behaviour is typically of this
form.

22/2. An example of a step-function in a system will be given
to establish the main properties.

Suppose a mass m hangs downwards suspended on a massless
strand of elastic. If the elastic is stretched too far it will break
and the mass will fall. Let the elastic pull with a force of k
dynes for each centimetre increase from its unstretched length,
and, for simplicity, assume that it exerts an opposite force when
compressed. Let @, the position of the mass, be measured verti-
cally downwards, taking as zero the position of the elastic when
there is no mass.

If the mass is started from a position vertically above or below
the point of rest, the movement will be given by the equation
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where g is the acceleration due to gravity. This equation is not

in canonical form, but may be made so by writing « =,
de/dt = a,, when it becomes
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If the clastic breaks, & becomes 0, and the equations become

dr, N

L -

d‘i‘ (3)
s

dt ~°

Assume that the elastic breaks if it is pulled longer than X.
The events may be viewed in two ways, which are equivalent.
We may treat the change of k& as a change of parameter to the

2-variable system w;, @, changing their equations from (2)

above to (3) (S. 21/1). The field of the 2-variable system will

change from .1 to B in Figure 22/2/1, where the dotted line at X

Ficure 22/2/1: Two fields of the system (x; and x,) of S. 22/2. With
unbroken elastic the system behaves as 4, with broken as B. When
the strand is stretched to position X it breaks.

shows that the ficld to its right may not be used (for at X the
elastie will break). )

Equivalent to this is the view whieh treats them as a 3-
variable system : @, @,, and k. This system is absolute, and has
one field, shown in Figure 22/2/2,

In this form, the step-function must be brought into the

canonical equations. A possible form is :
%: q(% + I—; tanh {¢(X — a,)} — k) . (4)
where K is the initial value of the variable /&, and ¢ is large and
positive. As g—> oo, the behaviour of & tends to the step-
function form.

Another method is to use Dirac’s §-function, defined by d(u) = 0
if w 520, while if v = 0, 6(u) tends to infinity in such a way that

j d(uw)du = 1.
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Then if du/dt = 6{¢p(u, v, . . .)}, du/dt will be usually zero ; but
if the changes of u, v, . . . take ¢ through zero, then d(u) becomes
momentarily infinite and « will change by a finite jump. These

Ficure 22/2/2: Field of the 3-variable system.

representations are of little practical use, but they are important
theoretically in showing that a step-function can be represented
in the canonical cquations.

22/3. 1In an absolute system, a step-function will change value
if, and only if, the system arrives at certain states: the eritical.
In Figure 22/2/2, for instance, all the points in the plane &k = K
and to the right of the line , = X are critical states for the step-
function k& when it has the initial value K.

The critical states may, of course, be distributed arbitrarily.
More commonly, however, the distribution is continuous. In this
case there will be a critical surface

bk, @, o . o, @) =0

which, given k, divides the critical from the non-critical states.
In Figure 22/2/2, for instance, the surface intersects the plane
I = K at the line #; = X. (The plane & = 0 is not intersected by
it, for there are no states in this system whose occurrence will
result in &k changing from 0.)

Commonly ¢ is a function of only a few of the variables of the
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system. Thus, whether a Post Office-type relay opens or shuts
depends only on the two variables: the current in the coil, and
whether the relay is already open or shut.

Such relays and critical states occur in the homeostat. When
two, three or four units are in use, the critical surfaces will form a
square, cube, or tesscract respectively in the phase-space around
the origin. The critical states will fill the space outside this sur-
face. As there is some °backlash’ in the relays, the critical
surfaces for opening are not identical with those for closing.

Systems with multiple fields

22/4. If, in the previous example, someone unknown to us were
sometimes to break and sometimes to replace the elastic, and if
we were to test the behaviour of the system 2y, @, over a prolonged
time including many such actions, we would find that the system
was often absolute with a field like 4 of Figure 22/2/1, and often
absolute with a field like B ; and that from time to time the field
changed suddenly from the one form to the other.

Such a system could be said without ambiguity to have two
fields. Similarly, if parameters capable of taking r combinations
of values were subject to intermittent change by some other,
unobserved system, a system might be found to have r fields.

22/5. The argument can, however, be reversed : if we find that
a subsystem has 7 ficlds we can deduce, subject to certain restric-
tions, that the other variables must include step-functions.

Theorem : If, within an absolute system @y, . . ., &n, @p, . + ., s,
the subsystem a;, . . ., @, is absolute within each of r fields
(which persist for a finite time and interchange instantancously)
and is not independent of @, . . ., ®;; then one or more of
&p, . . ., & must be step-functions.

Consider the whole system first while one field persists. Take
) ., @2 and allow time ¢,

Py o

a generic initial state af, . . ., a), @
to elapse ; suppose the representative point movestoai, . . ., @

’

Zp, ..., xs, where cach @’ is not necessarily different from a°.
Let further time ¢, elapse, the point moving on to Tiy o o s Tmy
Bas 1 5 55 x;. Now consider the line of behaviour that follows
the initial state @1, . . ., &, &, @y . . ., ¥, differing from the
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second point only in the value of @y : as the subsystem is absolute,
an interval ¢, will bring its variables again to @y, . . ., @,, i.e. these
variables’ behaviours are the same on the two lines. Now ,
either is, or is not, equal to m;’,. If unequal, then by definition
(S. 14/3) @, . . ., @, is independent of @p. So the behaviour
of @, . .., @, over t, will show either that wp = w?, (i.e. that
xp did not change over t;) or that @, . . ., @, is independent of
xp. Similar tests with the other variables of the set @y, . . ., @5
will enable them to be divided into two classes: (1) those that
remained constant over ¢, and (2) thosc of which the subsystem
&y, . . ., @n is independent. By hypothesis, class (2) may not
include all of ap, . . ., @ ; so class (1) is not void.

When a field of @,, . . ., @, changes, some parameter to this
system must have changed value. As @y, . . ., %n, Tp, . . ., Ts
is isolated, the ¢ parameter ’ can be none other than one or more of
Tp, . . .5 & As the field has changed, the parameter cannot be
in class (2). At the change of field, therefore, at least one of
those in class (1) changed value. So class (1), and therefore the
set ap, . . . , ¥, contains at least one step-function.
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