CHAPTER 21

Parameters

21/1. Wit canonical equations

dx; ;
7 =fily « « w5 La) (e =105 o s w5 1)

the form of the field is determined by the functional forms f;
regarded as functions of @, . . ., @,. If parameters a,, a,, .
are taken into consideration, the system will be specified by
equations

d:l!,'

dt
If the parameters are constant, the 2’s continue to form an absolute
system. If the @’s can take m combinations of values, then the
a’s form m different absolute systems, and will show m different
fields. If a parameter can change continuously (in value, not in
time), no limit can be put to the number of different fields which
can arise.

If a parameter affects only certain variables directly, it will
appear only in the corresponding f’s. Thus, if it affects only
x; directly, so that the diagram of immediate effects is

=fil®y = ¢ 55 Tni Cp Gos « = 1) (=15 & 5 «, W)

a-—> &y (_.; Lo,
then e will appear only in f; :

day/dt = fy(@y, @5 a)

day/dt = fy(@,, @s).
But it will in general appear in all the s of the integrals (S. 19/10).
The subject is developed further in Chapter 24.

Change of parameters can represent every alteration which can
be made on an absolute system, and therefore on any physical
or biological ¢ machine’. It includes every possibility of experi-
mental interference. Thus if a set of variables that are joined
to form the system & = f(x) are changed in their relations so
that they form the system @& = ¢(x), then the change can equally
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PARAMETERS 21/2

well be represented as a change in the single system @& = y(x ; «).
For if « can take two values, 1 and 2 say, and if

J(@) = y(e;1)

$(@) =y(z; 2)
then the two representations are identical.

As example of its method, the action of S. 8/10, where the two
front magnets of the homecostat were joined by a light glass fibre
and so forced to move from side to side together, will be shown
so that the joining and releasing are equivalent in the canonical
equations to a single parameter taking one of two values.

Suppose that units @;, @, and @; were used, and that the
magnets of 1 and 2 were joined. Before joining, the equations
were (S. 19/11)

dey/dt = ay2y + a2, + @52,

dy/dt = 9121 + Gy52p + Qy375

deg/dt == 53,0, + @500y + Agq2,
After joining, #, can be ignored as a variable since a; and a, are
effectively only a single variable. But @,’s output still affects the
others, and its force still acts on the fibre. The equations there-
fore become

doy/dt = (ay; + @1y + g1 + Gge)v; + (@33 + a23)~v3}
dug/dt = (as; + ass)v; + @333

Itis easy to verify that if the full equations, including the parameter

b, were :

dey/dt = {ay; + b(ay, + gy + ag)ley + (1 — blagyz,

+ (@15 + bayg)rs
dey/dt = g1y + agry + apats
dag/dt = (@31 + bago)ey + (1 — b)agyy + a5,
then the joining and releasing are identical in their effects with
giving b the values 1 and 0 respectively. (These equations are
suflicient but not, of course, necessary.)

21/2. A variable a; behaves as a ¢ null-funetion * if it has the
following properties, which are easily shown to be necessary and
sufficient for each other :
(1) As a function of the time, it remains at its initial value a.
(2) In the canonical equations, fi(z;, . . ., @,) is identically
Z€ero.
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21/3 DESIGN FOR A BRAIN

(3) In the group cquations, Fy(ad, . . ., a%; t) =al.

(Some region of the phase-space is assumed given.)

Since we usually consider absolute systems, we shall usually
require the parameters to be held constant. Sinee null-functions
also remain constant, the properties of the two will often be
similar. (A fundamental distinetion by definition is that para-
meters arc outside, while null-functions may be inside, the given

system.)

21/3. 1In an absolute system, the variables other than the step-
and null-functions will be referred to as main variables.

21/4. Theorem : In an absolute system, the system of the main-
variables forms an absolute subsystem provided no step-function
changes from its initial value.

Suppose ;, . . ., @} are null- and step-functions and the main-
variables are @gy1, . . ., @,. The canonical equations of the
whole system are

da,/dt =0
d:ck/dt =0
depi1/dt = fri1(@y « « oy Ty Thsiy o - -5 Tn)
d2nfdt = @5 & v w5 ks Lpiis « = » 5 Tn)
The first & equations can be integrated at once to give @, = af,

. . @ = a). Substituting these in the remaining equations

we get :

dwk+1/dt =ﬁ;+1(w(1’, S ()32, Tht1y « » o5 Xn)
Bl = Fi{ts & & wy By TEpEs » 5 o5 Bn)

The terms af, . . ., 2} are now constants, not effectively functions
of ¢ at all. The equations are in canonical form, so the system is
absolute over any interval not containing a change in a9, . . ., a}.

Usually the selection of variables to form an absolute system
is rigorously determined by the real, natural relationships existing
in the real © machine ’, and the observer has no power to alter them
without making alterations in the ¢ machine ’ itself. The theorem,
however, shows that without affecting the absoluteness we may take
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PARAMETERS 21/6

null-functions into the system or remove them from it as we
please.

It also follows that the statements: ‘ parameter a was held con-
stant at a®’, and ‘ the system was re-defined to include «, which,
as a null-function, remained at its initial valuc of a®’ are merely
two ways of describing the same facts.

21/5. The fact that the field is changed by a change of parameter
implies that the stabilitics of the lines of behaviour are changed.
For instance, consider the system

de/dt = — @ + ay, dy/dt = —y + 1
where @ and y have been used for simplicity instead of x; and x,.

When a =0, 1, and 2 respectively, the system has the three
fields shown in Figure 21/5/1.

N—r \1
N - NI
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Ficure 21/5/1 : Three fietds of 2 and y when a has the values (left to
right) 0, 1, and 2.

When @ = 0 there is a stable resting state at @ =0, y =1;

when @ = 1 there is no resting state;

when @ = 2 there is an unstable resting state at » = — 2,
y=—1.

The system has as many fields as there are values to a.

21/6. The simple physical act of joining two machines has, of
course, a counterpart in the equations, shown more simply in the
canonical than in the group equations.

One could, of course, simply write down equations in all the
variables and then simply let some parameter ¢ have one value
when the parts are joined and another when they are separated.
This method, however, gives no insight into the real events in
¢ joining * two systems. A better method is to equate para-
meters in one system to variables in the other. When this is
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21/7 DESIGN FOR A BRAIN

done, the second dominates the first. If parameters in each arc
equated to variables in the other, then a two-way interaction
occurs. Ior instance, suppose we start with the 2-variable
system

d{):'/dt :fl(m’ Y (l)
dy/dt = fyx, y)
then the diagram of immediate effects is

}and the 1-variable system dz/dt = ¢(z; b)

a—>rZY b—>z

If we put ¢ = z, the new system has the cquations

de/dt = fi(@, y; =)
dy/dt = fiyx, y)
dz/dt = ¢(z; b)
and the diagram of immediate effects becomes
b—>z—>aZy.
If a further join is made by putting b = y, the equations become

de/dt = f\(2, y; =)
dy/dt = fy@, y)
dz/dt = ¢z 5 y)
and the diagram of immediate effects becomes
w<—_;y
In this method each linkage uses up one parameter. This is
reasonable ; for the parameter used by the other system might
have been used by the experimenter for arbitrary control. So
the method simply exchanges the experimenter for another
system.
This method of joining does no violence to ecach system’s
internal activities : these proceed as before except as modified by

the actions coming in through the wvariables which were once
parameters.

21/7. The stabilitics of separate systems do not define the
stability of the system formed by joining them together.
In the general case, when the f’s are unrestricted, this propo-
sition is not easily given a meaning. But in the linear case (to
230



PARAMETERS 21/7

which all continuous systems approximate, S. 20/4) the meaning is
clear. Several examples will be given.

Ezample 1: Two systems may be stable if joined one way, and
unstable if joined another. Consider the 1-variable systems
de/dt = @ + 2p; + p, and dy/dt = — 2r — 8y. If they are
joined by putting r = @, p; = y, the system becomes

de/dt =2 + 2y + pz}

dy/dt = — 22 — 3y
The latent roots of its matrix are — 1, — 1; so it is stable. But
if they are joined by r = a, p, =y, the roots become -+ 0-414
and — 2-414; and it is unstable.

Example 2 : Several systems, all stable, may be unstable when
joined. Join the three systems

de/dt = — @ — 2q — 2r
dy/dt = —2p —y +r
/At =p +q—=2
all of which are stable, by putting p =2, g =1y, r ==2. The
resulting system has latent roots +1, — 2, — 2.

Example 3: Systems, each unstable, may be joined to form a

stable whole. Join the 2-variable system

de/dt = 3x — 8y — 3p}

dy/dt = 3¢ — 9y — 8p
which is unstable, to dz/di = 21¢ 4 3r + 3z, which is also
unstable, by putting ¢ =@, r =y, p = 2. The whole is stable.

Example 4 : If a system

dyy/dt = fi(my, - o oy Xn; G o L) (=15 x s s; 7)
is joined to another system, of y’s, by equating various a’s and y’s,
then the resting states that were once given by certain com-
binations of @ and a will still occur, so far as the a-system is
concerned, when the y’s take the values the a’s had before. The
zeros of the f’s are thus invariant for the operations of joining and
separating.
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