CHAPTER 20

Stability

20/1. ¢ Sraprary ’is defined primarily as a relation between a
line of behaviour and a region in phase-space because only in
this way can we get a test that is unambiguous in all possible
cases. Given an absolute system and a region within its field,
a line of behaviour from a point within the region is stable if it
never leaves the region.

20/2. If all the lines within a given region are stable from all
points within the region, and if all the lines meet at one point,
the system has ‘normal’ stability.

20/3. A resting state can be defined in several ways. In the
field it is a terminating point of a line of behaviour. In the
group equations of S. 19/10 the resting state X, . . ., X, is
given by the equations '
X; = Lim Fya®; t) (t=1,...,mn) Q)
t—>»o0

if the n limits exist. In the canonical equations the values satisfy
filXy oo, Xp)=0 (i=1,...,n) . (2
A resting state is an invariant of the group, for a change of ¢
does not alter its value.
ofi

If the Jacobian of the f’s, i.e. the determinant Er
s

be symbolised by J, is not identically zero, then there will be
isolated resting states. If J = 0, but not all its first minors are
zero, then the equations define a curve, every point of which
is a resting state. IfJ = 0 and all first minors but not all second
minors are zero, then a two-way surface exists composed of
resting states; and so on.

, which will

20/4. Theorem : If the f’s arc continuous and differentiable,
an absolute system tends to the linear form (S. 19/27) in the
neighbourhood of a resting state.
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STABILITY 20/5

Let the system, specified by

dey/dt = fi(@y, - . ., Xn) =1 ., .y M)
have a resting state .\'y, . . ., X,, so that
Xy v 50, Xz) =0 i=1...,n)
Put ; =X; + & (¢ =1, ..., n) so that a; is measured as a

deviation &; from its resting value. Then
d . ;
d_i(Xz+§%) =ﬁ(X1+§p s e ey An+§n) (Z=1’ ) ")

Expanding the right-hand side by Taylor’s theorem, noting that
dX;/dt = 0 and that f;(X) = 0, we find, if the £&’s arcinfinitesimal,
that

des _ o ofi .
dt_a§1§1+"'+a§"§" i=1,...,n)
The partial derivatives, taken at the point X, . . ., X,, are

numerical constants. So the system is linear.

20/5. In general the only test for stability is to observe or
compute the given line of behaviour and to see what happens
as t—> oo. For the linear system, however, there are tests that
do not involve the line of behaviour explicitly. Since, by the
previous section, many systems approximate to the linear within
the region in which we are interested, the methods to be de-
scribed are widely applicable.
Let the linear system be

%:ailmlﬁ-aizmz—}- v oo Ginn (t=1,...,n) (1)
or, in the concise matrix notation (S. 19/27)

%= Az ; : : . (2)
Constant terms on the right-hand side make no difference to
the stability and can be ignored. If the determinant of A4 is not
zero, there is a single resting state. The determinant

@y —A Ay .o Gqn
Ay Qoa—A . . . @y
Any  Qng - -« Qup—A

when expanded gives a polynomial in A of degree » which, when
equated to 0, gives the characteristic equation of the matrix 4 :
M m A m A2 4 L my = 0.
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20/6 DESIGN FOR A BRAIN

20/6. Each coefficient im; is the sum of all i-rowed principal
(co-axial) minors of 4, multiplied by (— 1). Thus,
My = —(ay + Ay + . . . + @n); mp=(—1)"|d]

Example : The linear system

de,/dt = — 5z, + 4z, — 624
day/dt = Tax, — 6, + 8ay
dag/dt = — 2, + 4o, — day

has the characteristic equation

A3 41542 4 24 + 8 = 0.

20/7. Of this equation the roots A,, . . ., 4, are the latent
roots of 4. The integral of the canonical equations gives each
#; as a linear function of the exponentials ¢!, . . ., ¢2!. For
the sum to be convergent, no real part of 4,, . . ., 4, must be
positive, and this criterion provides a test for the stability of
the system.

xample : The equation A3 4 1542 4 24 4+ 8 = 0 has roots

— 14902 and — 0-049 4+ 0-729 V' — 1, so the system of the
previous section is stable.

20/8. A test which avoids finding the latent roots is Hurwitz’ :
a necessary and suflicient condition that the linear system is
stable is that the series of determinants

my, |my 1|, jmy 1 0 |my 1 0 0| ctc
My Ny mg g my | mg mg my 1
My My My mg My My My

Mg Mg Mg My
(where, if ¢ > n, m, = 0), arc all positive.
sxample : The system with characteristic equation
AP+ 1542 4210 4+8=0
yiclds the scries

4+15 |15 1], 15 1 0
s 2| 8 2 15
0 0 8

These have the values + 15, + 22, and + 176. So the system
is stable, agreeing with the previous test.
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STABILITY 20/11

20/9. If the coellicients in the characteristic equation are not
all positive the system is unstable. But the converse is not
true. Thus the lincar system whose matrix is

1 46 0
— /6 1 0
0 0 —3

has the characteristic equation A% + A2 4 A 4 21 = 0; but the
latent roots are + 1 4+ V' — 6 and — 3 ; so the system is unstable.

20/10. Another test, related to Nyquist’s, states that a lincar
system is stable if, and only if, the polynomial

g Y A T L L
changes in amplitude by nz when 4, a complex variable
(A = a + bu where « = v/ — 1), goes from — ¢ 00 to -+ ¢ oo along
the b-axis in the complex A-plane.

Nyquist’s criterion of stability is widely used in the theory
of clectric circuits and of servo-mechanisms. It, however, uses
data obtained from the response of the system to persistent
harmonic disturbance. Such disturbance renders the system
non-absolute and is therefore based on an approach different from
ours.

20/11. Some further examples will illustrate various facts
relating to stability.

Example 1 : If a matrix [¢] of order n X n has latent roots
Ay« + «s An then the matrix, written in partitioned form,

0o | I
i
a | 0
of order 21 x 2n, where I is the unit matrix, has latent roots
+ \/l_l, ..., 4+ VA, It follows that the system

dzazi

iz
of common physical occurrence, must be unstable.

Example 2: The diagonal terms a;; represent the intrinsic
stabilities of the variables; for if all variables other than ; are
held constant, the linear system’s i-th equation becomes

dz;/dt = aux; 4 c,
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20/11 DESIGN FOR A BRAIN

where ¢ is a constant, showing that under these conditions a;
will converge to — ¢/aq; if a; be negative, and will diverge without
limit if a; be positive.

If the diagonal terms a; are much larger in absolute magnitude
than the others, the roots tend to the values of a;;. It follows
that if the diagonal terms take extreme values they determine
the stability.

Example 3 : If the terms ay; in the first n — 1 rows (or columns)
are given, the remaining 2 terms can be adjusted to make the
latent roots take any assigned values.

Example 4 : The matrix of the homeostat equations of S. 19/11
is

2 : B ‘ 1 . ‘ <]
. . . . 1 . .
. . . 1 .
> . . . . . . 1
@b aph agh ayh —j . .
gl @ooh  @ysh  agh . —J . .
azgh agh agsh agh . —J .
Lagh ah aggh agh . . . —

If j = 0, the system must be unstable (by Example 1 above).
If the matrix has latent roots py, . . ., ug, and if A, . . ., A4
are the latent roots of the matrix [ayk], and if § %0, then the
A’s and u’s are related by Ap = py -+ jug.  Asj—> oo the 8-variable
and the 4-variable systems are stable or unstable together.

Example 5 : In a stable system, fixing a variable may make
the system of the remainder unstable. For instance, the system
with matrix

6 5 —10
—4 -3 —1
4 2 —6

is stable. But if the third variable is fixed, the system of the
first two variables has matrix

[t ]

Example 6: Making one variable more stable intrinsically
220
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STABILITY 20/12

(Example 2 of this section) may make the whole unstable. For
instance, the system with matrix

i

is stable. But if ¢,; becomes more negative, the system becomes
unstable when a,, beeomes more negative than — 4.

Example 7: In the n X n matrix
]

a b

¢c 1 d
in partitioned form, [e] is of order £ X k. If the k diagonal
elements @;; become much larger in absolute value than the rest,
the latent roots of the matrix tend to the &k values a;; and the
n — [ latent roots of [d]. Thus the matrix, corresponding to [d],

1 —3
1 2

has latent roots 4+ 1:5 4 1:658:, and the matrix

— 100 —1 2 0
—2 —100 —1 2
0 -3 1 —3

2 —1 1 2

has latent roots — 101:39, — 98:62, and -+ 1506 -4 1-720..

Corollary : If system [d] is unstable but the whole 4-variable
system is stable, then making @, and @, more stable intrinsically
will eventually make the whole unstable.

Ezample 8 : The holistic nature of stability is well shown by
the system with matrix

—85 —2 @
—6 —5 6
—85 B —4

in which each variable individually, and every pair, is stable ;
yet the whole is unstable.

The probability of stability

20/12. The probability that a system should be stable can be
made precise by the point of view of S. 14/16. We consider

2921



20/12 DESIGN FOR A BRAIN

an ensemble of absolute systems
dog/dt = fi{@ey, . . ., @ny ogy - . ) (t=1,...,n)

with parameters o, such that each combination of a-values gives
an absolute system. We nominate a point @ in phase-space, and
then define the ¢ probability of stability at @ ’ as the proportion
of a-combinations (drawn as samples from known distributions)
that give both (1) a resting state at @, and (2) stable equilibrium
at that point. The system’s general ‘ probability of stability > is
the probability at @ averaged over all Q-points. As the proba-
bility will usually be zero if @ is a point, we can consider instead
the infinitesimal probability dp given when the point is increased
to an infinitesimal volume dV.

The question is fundamental to our point of view ; for, having
decided that stability is necessary for homeostasis, we want to
get a system of 10!° nerve-cells and a complex environment
stable by some method that does not demand the improbable.
The question cannot be treated adequatcly without some quan-
titative study. Unfortunately, the quantitative study involves
mathematieal difficultics of a high order. Non-linear systems
cannot be treated generally but only individually. Here I shall
deal only with the linear case. It is not implied that the nervous
system is linear in its performance or that the answers found
have any quantitative application to it. The position is simply
that, knowing nothing of what to expect, we must collect what
information we can so that we shall have at least some fixed
points around which the argument ecan turn.

The applicability of the concept of linearity is considerably
widened by the theorem of S. 20/4.

The problem may be stated as follows: A matrix of order
n % n has elements which are real and are random samples from
given distributions. TFind the probability that all the latent
roots have non-positive real parts.

This problem scems to be still unsolved even in the special
cases in which all the eclements have the same distributions,

sclected to be simple, as the ‘ normal ’ type e—2%, or the *rect-

angular > type, constant between — a and + a. Nevertheless,

some answer is desirable, so the ‘ rectangular ’ distribution (integers

evenly distributed between — 9 and + 9) was tested empirically.

Matrices were formed from Fisher and Yates’ Table of Random
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Numbers, and each matrix was then tested for stability by Hurwitz’
rule (S. 20/8 and S. 20/9). Thus a typical 3 X 3 matrix was

—1 —& —8
— 8 4 —8
il el @

In this case the second determinant is — 86, so it nced not be
tested further as it is unstable by S. 20,9. The testing becomes
very time-consuming when the matrices exceed 3 X 3, for the time
taken increases approximately as n®. The results are summarised
in Table 20/12/1.

i S
| Order of Number I\f‘é?nb(;r | Per cent
‘ matrix tested stable stable
’ \
= \
f 2 x 2 320 T 24 }
3 X 3 100 12 12
‘ 4 X 4 100 1 1

TaBLE 20/12/1.

The main feature is the rapidity with which the probability
tends to zero. The figures given are compatible (32 = 4-53,
P = 0-10) with the hypothesis that the probability for a matrix
of order n X m is 1/2. That this may be the correct expression
for this particular case is suggested partly by the fact that it
may be proved so when n =1 and n =2, and partly by the
fact that, for stability, the matrix has to pass all of n tests.
And in fact about a half of the matrices failed at each test.
If the signs of the determinants in Hurwitz’ test arc statistically
independent, then 1/2" would be the probability.

In these tests, the intrinsic stabilities of the variables, as
judged by the signs of the terms in the main diagonal, were
equally likely to be stable or unstable. An interesting variation,
therefore, is to consider the case where the variables are all
intrinsically stable (all terms in the main diagonal distributed
uniformly between 0 and — 9).

The effect is to increase their probability of stability. Thus
when 7 is 1 the probability is 1 (instead of }); and when n is
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the probability is 3/4 (instead of 1/4).

3}
gave the results of Table 20/] 2/2.

DESIGN TOR A BRAIN

Some emnpirical tests

_ - — ]
Order of Number Number | Per cent
matrix tested found I stable

- ‘ stable
- ‘ . —— T
2 x 2 120 87 72
3x38 100 55 55

TaBLE 20/12/2.

The probability is higher, but it still falls as n is increased.
A similar series of tests was made with the homeostat. Units
were allowed to interact with settings determined by the uni-
selectors, and the percentage of stable combinations found when
the number of units was two; the percentage was then found
for the same general conditions except that three units interacted ;

1001 4

O‘J' T T
2 3

NUMBER OF VARIABLES
Ficurre 20/12/1.

i 2

and then four. The general conditions were then changed and
a ncw triple of percentages found. And this was repeated six
times altogether. As the general conditions sometimes encour-
aged, sometimes discouraged, stability, some of the triples were
all high, some all low; but in every case the per cent stable fell
as the number of interacting units was increased. The results
are given in Figure 20/12/1.
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STABILITY 20/12

These results prove little; but they suggest that the proba-
bility of stability is small in large systems assembled at random.
It is suggested, therefore, that large systems should be assumed
unstable unless evidence to the contrary can be produced.
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