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I. INTRODUCTION

Molecular genetics is one example of a successful bridge that links a
phenomenology of macroscopic things experienced directly (a taxonomy
of species; intraspecies variations; etc.) with the structure and function
of a few microscopic elementary units (in this case a specific set of organic
macromolecules) whose properties are derived from other, independent
observations. An important step in building this bridge is the recognition
that these elementary units are not necessarily the sole constituents of
the macroscopic properties observable in things, but are determiners for
the synthesis of units that constitute the macroscopic entities. Equally
helpful is the metaphor which considers these units as a “program,” and
the synthesized constituents in their macroscopic manifestation as the
result of a “computation,” controlled and initiated by the appropriate
program. The genes for determining blue eyes are not blue eyes, but in
blue eyes one will find replicas of genes that determine the development
of blue eyes. ’ .

Stimulated by the success of molecular genetics, one is tempted to
search again for a bridge that links another set of macroscopic phenomena,
namely the behavior of living things, with the structure and function of a
few microscopic elementary units, most likely the same ones that are
responsible for shape and organization of the living organism. However,
“molecular ethology” has so far not yet been blessed by success, and it
may be worthwhile to investigate the causes.

One of these appears to be man's superior cognitive powers in dis-
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criminating and identif ying forms and shapes as compared to those powers
which allow him to diseriminate and identify change and movement.
Indeed, there is & distinetion between these two cognitive processes, and
thia distinetion is reflected by a difference in semantic structurc of the
linguistie olements which represent the two kinds of apparitions, namely
different nouns for things distinct in form and shape, and verbs for change
and motion. :

The structural distinction between nouns (cl*) and verbs (v:) becomes
apparent when lexical definitions of these are established. Essentially, a
noun signifies n class (el') of objects. When defined, it is shown to be a
member of a more inclusive class (cl?), denoted also by a noun which,
in turn, when defined is shown to be a member of a more inclusive class
(1), ete., [pheasant — bird — animal — organism — thing]. We have the
following scheme for representing the definition paradigm for nouns:

olr = felg felnsy (e telna b (1)

Sa—1 ‘n—2 im

whaere the notation {e} stands for n class of elements ¢ G=12...,P)h
and subseripted subscripts are used to associate these subscripts with the
approprinte superscripts. The highest order n in this hierarchy of classes
is alwaya represented by 2 single undefined term “thing,” “entity,” “act,”
ete., which appeals to basic notions of being able to perceive at all. A graphic
ropresentation of the hierarchical order of nouns is given in Fig. 1 and a
more detailed discussion of the properties of these (inverted) ‘‘noun-
chain-trees” can be found elsewhere (Weston, 1964; Von Foerster, 1967n).

Essentially, a verb () signifies an action, and when defined is given
by a set of synonyms {v;}, by the union or by the intersection of the

meaning of verbs denoting gsimilar actions. [hit — (strike, blow, knock} —

n

Fig. 1. Ascending hierarchical definition structure
for nouns. (Nouns are at nodes; arrow heads: de-
finiens; arrow taila: definiendum.)
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1 4
Fig. 2. Ciosed heterarchical definition structure

for verbs. (Verbs are at nodes; arrow heads:
definiens; arrow tails: definiendum.)

{(hit, blow, ...) (stir, move air, sound, soothe, lay eggs, ..., boast)
(strike, Llow, bump, collide .. .)} — ete.]
vi={r iV uv]]e (2)
A graphic representation of this basically closed hetcrarchical structure
is given in Fig. 2, and its corresponding representation in form of finite
matrices is discussed elsewhere (Von Foerster, 1966).

The essential difference in the cognitive processes that allow for
identification of forms and those of change of forms is not only reflected
in the entirely different formalisms needed for representing the different
definition structures of nouns [Eq. (1)] and of verbs [Eq. (2)], but also
by the fact that the set of invariants that identify shape under various
transformations can be computed by a single deductive algorithm (Pitts
and McCulloch, 1947), while identification of even elementary notions of
behavior requires #nductive algorithms that can only be computed by
perpetual comparison of present states with earlier states of the system
under consideration (Von Foerster et al., 1968).

These cognitive handicaps put the ethologist at a considerable dis-
advantage in developing a phenomenology for his subject matter when
compared to his colleague the geneticist. Not only are the tools of ex-
pressing his phenomena devoid of the beautiful isomorphism which prevails
between the hierarchical structures of all taxonomies and the definition
of nouns that describe them, but, he may fall victim to a semantic trap
which tempts him to associate with a conceptually isolable function a
corresponding isolable mechanism that generates this function. This temp-
tation secms to be particularly strong when our vocabulary suggests a
variety of conceptually separable higher mental faculties as, for instance
“to learn,” “to remember,” “to perceive,” “to recall,” “to predict,” ete.,
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and the attempt is made to identify and localize within the various parts
of our brain the mechanisms that learn, remember, perceive, recall, predict,
ete. The hopelessness of a search for mechanisms that represent these
functions in isolation does not have a physiological basis as, for instance,
“the great complexity of the brain,” “‘the difficulty of measurement,” etec.
This hopelessness has a purely semantic basis. Memory, for instance,
contemplated in isolation is reduced to “recording,” learning to ‘‘change,”
perception to “input,” and so on. In other words, in separating these
functions from the totality of cognitive processes, one has abandoned the
original problem and is now searching for mechanisms that implement
entirely different functions which may or may not have any semblance to
some processes that are subservient to the maintenance of the integrity of
the organism as a fynctioning unit (Maturana, 1969).
Consider the two conceivable definitions for memory:

(a) An organism’s potential awareness of past experiences.
(b) An observed change of an organism’s response to like sequences
of events.

While definition A postulates a faculty (memory.) in an organism
whose inner experience cannot be shared by an outside observer, definition
B postulates the same faculty (memory.) to be operative in the observer
only—otherwise he could not have developed the concept of “change”—
but ignores this fasulty in the organism under observation, for an observer
cannot “in principle” share the organism’s inner experience. From this
follows definition B.

It is definition B which is generally believed to be the one which
obays the ground rules of “the scientific method,” as if it were impossible
to cope scientifically with self-reference, self-description, and self-expla-
nation, i.e., closed logical systems that include the referee in the reference,
the descriptor in the description, and the axioms in the explanation.

This belief is unfounded. Not only are such logical systems extensively
studied (e.g., Gunther, 1967; Lofgren, 1968), but also neurophysiologists
(Maturana et al., 1968), experimental paychologists (Konorski, 1862), and
others (Pask, 1968; Von Foerster, 1969) have penetrated to such notions.

These preliminaries suggest that the explorer of mechanisms of men-
tation has to resolve two kinds of problems, only one of which belongs to
physiology or, as it were, to physics; the other one is that of semantics.
Consequently, it is proposed to reexamine some present notions of learning
and memory as to the category to which they belong, and to sketch a
conceptual framework in which these notions may find their proper place.

The next section, “Theory,” reviews and defines concepts associated
with learning and memory in the framework of a unifying mathematical
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formalism. In the Section III various models of interaction of molecules
with functional units of higher organization are discussed.

. THEORY

A. General Remarks

Since we have as yet no comprehensive theory of behavior, we have
no theory of learning and, consequently, no theory of memory. Never-
theless, there exists today a whole spectrum of conceptual frameworks
ranging from the most naive interpretations of learning to the most
sophisticated approaches to this phenomenon. On the naive side, “learning”
is interpreted as a change of ratios of the occurrence of an organism’s
actions which are predetermined by an experimenter’s ability to discrimi-
nate such actions and his value system, which classifies these actions into
“hits” and “‘misses.” Changes are induced by manipulating the organism
through electric shocks, presentations of food, etc., or more drastically by
mutilating, or even removing, some of the organism’s organs. “Teaching”
in this frame of mind is the administration of such “reinforcements” which
induce the changes observed on other occasions.

On the sophisticated side, learning is seen as a process of evolving
algorithms for solving categories of problems of ever-increasing complexity
(Pask, 1968), or of evolving domains of relations ‘between the organism
and the outside world, of relations between these domains, ete. (Maturana,
1969). Teaching in this frame of mind is the facilitation of these evolution-
ary processes.

Almost directly related to the level of conceptual sophistication of
these approaches is their mathematical naiveté, with the conceptually
primitive theories obscuring their simplicity by a smoke screen of mathe-
matical proficiency, and the sophisticated ones failing to communicate their
depth by the lack of a rigorous formalism. Among the many causes for this
unhappy state of affairs one seems to be most prominent, namely, the
extraordinary difficulties that are quickly encountered when attempts are
made to develop mathematical models that are commensurate with our
epistemological insight. It may require the universal mind of a John von
Neumann to give us the appropriate tools. In their absence, however, we
may just browse around in the mathematical tool shop, and see what is
available and what fits best for a particular purpose.

In this paper the theory of “finite state machines” has been chosen
as a vehicle for demonstrating potentialities and limitations of some con-
cepts in theories of memory, learning, and behavior mainly for two reasons.
One is that it provides the most direct approach to linking a system’s
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oxternal variables s, ez, stimulus, response, input, output, cause, effect,
ete., to states nnd operations that are internal to the system. Since the
contral issue of 1 book on “‘molecular mechanisms in memory and learning”
must be the development of a link which connects these internal mecha-
nisms with their manifestations in overt behavior, the “finite state ma-
chine’’ appears to be a useful model for this task.

The other reason for this choice is that the interpretations of its
formalism are left completely open, and may as well be applied to the
animal as & whole; to cejl assemblies within the animal;.to single cells and
their operational modalities, for instance, to the single neuron; to subcellular
constituents; and, finally, to the molecular building blocks of these con-
stituents, A

With due apologies to the reader who is used to a more extensive and
rigorous trentment of this topie, the essentinl features of this theory will
be bricfly sketched to'save those who may be unfamiliar with this formalism
from having to consult other sources (Ashby, 1956; Ashby, 1962; Gill,

1962).

B. Finite State Machines

1. Dekrmim'ﬁic Machines

Fasentially, the theory of finite state machines is that of computation.
It postulates two finite sets of external states called “input states” and
“output states,” one finite set of “internal states,” and two explicitly
defined operations (computations) which determine the instantaneous and

temporal relations between these states.*
Leto; (1 =1,2,...,n;) be the n, receptacles for inputs z; each of

which ean assume a finite number, »; > 0, of different values. The number

* Although the interpretation of states and operations with regard to observables
ix left completely open, some caution is advisable at this point il these are to serve as
mathematien] models, say, for the behavior of a living organism. A specific physical
spatiotemporal configuration which in identifiable by the experimenter who wishes that
this configuration be appreciated by the organism ax & “stimulus’ eannot sut modo be
taken ax “input state” for the machine. Such a stimulux may be a stimulant for the
experimenter, hui ba ignored by the organism. An input state, on the other hand,
cannot be ignored by the machine, except when explicitly instructed to do so. More ap-
propriately, the distribution of the activity of the afferent fibers has to be taken s an
input, and similarly, the distribution of activity of efferent fibers may be taken as the

output of the system.
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of distinguishable input states is then
X=]IIu (3)
tol

A particular input state z(¢f) at time ¢ (or z for short) is then the identifi-
cation cf the values z; on all n, input receptacles &; at that “moment”:

z(t) = z = {z;], (4)

Similarly, let Y; (7 = 1, 2, ..., n,) be the n, outlets for outputs y,,
each of which can assume a finite number, v; > 0, of different values. The
number of distinguishable output states is then

¥ =IIv (5)

A particular output state y(¢) at time ¢ (or y for short) is then the identifi-
cation of the values y; on all n, outlets Y, at that “moment’:

y(t) =y = {y} - (6)

Finally, let Z be the number of internal states z which, for this dis-
cussion (unless specified otherwise), may be considered as being not
further analyzable. Consequently, the values of z may just be taken to be
the natural numbers from 1 to Z, and a particular output state z(¢) at
time ¢ (or z for short) is the identification of z's value at that “moment”:

2(t) =2 (7

Each of these ‘“‘moments” is to last a finite interval of time, A, during
which the values of all variables r, y, z are identifiable. After this period,
ie., at time ¢ + A, they assume values z(¢ + A), y(¢ + A), 2(t + A) (or
7', y', 2’ for short), while during the previous period ¢ — A they had values
r(t — A), y(t — A), z(t — A) (or z*, y*, z* for short).

After having defined the variables that will be operative in the machine
we are now prepared to define the operations on these variables. These
are two kinds and may be specified in a variety of ways. The most popular
procedure is first to define a “driving function” which determines at each
instant the output state, given the input state and the internal state at
that instant:

¥y = fu(z,2) (8

Although the driving function f, may be known and the time course of
input states r may be controlled by the experimenter, the output states y
as time goes on are unpredictable as long as the values of z, the internal
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states of the machine, are not yet specified. A large variety of choices are
open to specify the time course of z as depending on z, on y, or on other
newly to be defined internal or external variables. The most profitable
specification for the purposes at hand is to define z recursively as being
dependent on previous states of affairs. Consequently, we define the “state
function” f, of the machine to be:

z = f,(z* z*) v (9a)
" or alternately and equivalently . .
2 = fi(z,2) (9b)

that is, the present internal state of the machine is a function of its previous
internal state and its previous input state; or alternately and equivalently, -
the next internal machine state is a function of both its present internal
and input states.

With the three sets of states [z}, lyl {z} and the two fuhctions f,
and f,, the behavior of the machine, i.e., its output sequence, is completely
determined if the input sequence is given.

Such 2 machine is called a sequential, state-determined, “‘nontrivial”
machine and in Fig. 3a the relations of its various parts are schematically
indicated.

Such a nontrivial machine reduces to a “tnvml” machine if it is
insensitive to changes of internal states, or if the internal states do not

change (Fig. 3b):

2 = z = 2 = constant (10a)
¥ = fu(z, constant) = f(z) (10b)
i
X v fz z fy —»y

a
ot Y
b

Fig. 3. Signal flow in a finite state machine (a);
input-output relation in a trivial machine (b).
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In other words, a trivial machine is one which couples deterministicauy a
particular input state with a specific output state or, in the language of
naive reflexologists, a particular stimulus with a specific response.
. Since the concept of “internal states” ig erucial in appreciating the
difference between a trivial and 2 nontrivial machine, we shall now give
various formal interpretations of these states to lift them from the limbo
of “being not further analyzable.” -5
First, it may appear that by an artifice one can get rid of these mys-
terious states by defining the driving funetion f, in a recursive form.
However, as we shall see shortly, these states reappear in just another form,
Consider the driving function (Eq. (8)] at time ¢ and one step later

(t+ 4):

v =Jfu(z,2)

Y =fulz,2) (8
and assume there exists an “inverse function” to Ju:

z=¢,(z,9) (11)

We now enter the state function [Eq. (9b)] for 2 into Eq. (8') and
replace z by Eq. (11):

Y = Il fu(x, 84(2,4)) = F,0(2, 2, 4) (12)
or alternately and equivalently
| ¥ = F,z, 2%, y%) (13)
However, y* is given recursively through Eq. ( 13)
Yt = Fv(l)(xt’ T**, y*+) (13*)

and inserting this into Eq. (13) we have
' y - Fy(z)(r’ I*, x#*’ y**)
and for n recursive steps '
y= py(u)(,_., z*, _tu’ _'tut, . ,I(n)*’ y(n)*) (14)

This expression suggests that in a nontrivial machine the output is not
merely a function of its present input, but may be dependent on the par-
ticular sequence of inputs reaching into the remote past, and an output
state at this remote past. While this is only to a certain extent true—the
“remoteness” is carried only over Z recursive steps and, moreover, Eq.
(14) does not uniquely determine the properties of the machine—this
dependence of the machine’s behavior on its past history should not tempt
one to project into this system a capacity for memory, for at best it may
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look upon its present internal state which xﬁhy well serve as loken for
the past, but without the powers to recapture for the system all that which

has gone by.
'Chis may be most ensily seen when Eq. (13) is rewritten in its full

recursive form for a linear machine (with z and y now real numbers)
y(t + A) — ay(t) = bx(t) (15a)

ot in ita differential analog expanding y{t + 4) = u(t_) + Ady/dt:

dy _ ay = x(t) (15b)
dl

with the corresponding solutions

J(na) = a'[y(0) + b 3 a-iz(ia)] (16a)
and |
y(t) = e~ [y(O) +[ e"".‘c(r)dr] (16b)
0

From these expressions it is clear that the course of events represented
by z(3A) (or z(r)) is “integrated out,” and is manifest only in an additive
term which, nevertheless, changes s time goes on.

However, the failure of this simple machine to account for memory
should not discourange one from contemplating it a8 a possible useful
element in a system that remembers.

While in these examples the internal states z provided the machine
with an appreciation—however small—of its past history, we shall now
give an interpretation of the internal states z as being a selector for a
apecific funetion in a set of multivalued logical functions. This is most
casily seen when writing the driving function £, in form of a table.

Let a, b, ¢... X be the input values z; &, 8, v... Y be the output
values y; and 1, 2, 3. .. Z be the values of the internal states. A particular
driving function J, is defined if to all pairs [z} an appropriate value of y
is associated. This is suggested in Table T.

Clearly, under z = 1 a particular logical function, y = F\(z), relating
¥ with z is defined; under z = 2 another logical function, y = Fi(z), is
defined; and, in general, under each z a certain logical function y = F,(z)
iy dofined.

Hence, the driving function f, can ba rewritten to read

v = F.(x), (17)
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TABLE I
Computing Z Logical Function F,(z) on Inputs z

z|1)1]1 1121212 . 2 ZZ’Z z
rlalb|ec X|albdle X a b’c X
yivlaiB Slalvy|B € 8 0‘7 5

which means that this machine computes another logical function F,. on
its inputs z, whenever its internal state z changes according to the state
function 2’ = f,(z, 2).

Or, in other words, whenever z changes, the machine becomes a

different trivial machine.

While this observation may be significant in grasping the funda-
mental difference between nontrivial and trivial machines, and in appreci-
ating the significance of this difference in a theory of behavior, it permits
us to calculate the number of internal states that can be effective in chang-

ing the modus operandi of this machine.

Following the paradigm of calculating the number 91 of logical func-
tions as the number of states of the dependent variable raised to the power
of the number of states of the independent variables

T = (no. of states of dep. variables) (no- of states o indep. varisbles)  (]8)
we have for the number of possible trivial machines which connect y with z
Nr =YX (19)

This, however, is the largest number of internal states which can
effectively produce a change in the function F.(z), for any additional
state has to be paired up with a function to which a state has been already
assigned, hence such additional internal states are redundant or at least

indistinguishable. Consequently
Z<Yx

Since the total number of driving functions fu(z, 2) is
Np = YXZ, (20)

its largest value is:
Fip = YXr¥ (21)

A . —
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Similarly, for the number of staté functions f,(z, £) we have
Ng = ZX% (22)
whose largest effective value is

g = YO’ = [9p]¥ (23)

These numbers grow very quickly into meta-astronomical magnitudes
even for machines with most modest aspirations.

Let a machine have only one two-valued output (n, = 1; v, = 2;°
y = {0;1}; Y = 2) and n two-valued inputs (n, = n;v, = 2;z = {0;1};
X = 2. Table II gives the number of effective internal states, the
number of possible driving functions, and the number of effective state
functions for machines with from one to four “afferents” according to the
equations

Z =7

tLAg

RNp = 2
org = 2

These fast-rising numbers suggest that already on the molecular level
without much ado a computational variety can be met which defies
_ imagination. Apparently, the large variety of results of genetic compu-
_tation, as manifest in the variety of living forms even within a single
species, suggests such possibilities. However, the discussion of these possi-
bilities will be reserved for the next section.

TABLE II

The Number of Effective Internal States Z, the Number of Possible Driving
Funetions Ip, and the Number of Effective State Functions s for Machines '
with One Two-Valued Output and with from One to Four Two-Valued Inputs

" z Ao NRs

! 4 28 63536

2 16 2,100 6.10"
3 258 1{ys00 300. 10019°
4 83530 300 10000 1600.1071¢*
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2. Interacting Machines

We shall now discuss the more general case in which two or more
such machines interact with each other. If some aspects of the behavior of
an organism can be modeled by a finite state machine, then the interaction
of the organism with its environment may be such a case in question, if the
environment is likewise representable by a finite state machine. In fact,
such two-machine interactions constitute a popular paradigm for interpret-
ing the behavior of animals in experimental learning situations, with the
usual relaxation of the general complexity of the situation, by chosing for
the experimental environment a trivial machine. “Criterion’” in these
learning experiments is then said to have been reached by the animal when
the experimenter succeeded in transforming the animal from a nontrivial
machine into a trivial machine, the result of these experiments being the
interaction of just two trivial machines.

We shall denote quantities pertaining to the environment (E) by
Roman letters, and those to the organism (Q) by the corresponding Greek
letters. As long as E and Q are independent, six equations determine their
destiny. The four “machine equations,” two for each system

E:  y=/f(z2) (24a)
Z = fi(z,2) (24b)

S g =14 0) (25a)
' =fi& ) (25b)

and the two equations that describe the course of events at the ““receptacles”

of the two systems
r=2z(); E=¢&@) (26a, b)

We now let these two systems interact with each other by connecting
the (one step delayed) output of each machine with the input of the other.
The delay is to represent a “reaction time” (time of computation) of each
system to a given input (stimulus, cause) (see Fig. 4). With these con-
nections the following relations between the external variables of the two
systems are now established:

r=g=u; F=y=v (27a, b)

where the new variables u, v represent the ‘“messages” transmitted from
@ — E and E — Q respectively. Replacing z, y, 4, £ in Egs. (24) (25) by
u, v according to Eq. (27) we have
v =flw,2); u = f(y¢) ,
Z=Jfw,2); =L@ (28)
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S’
(7]

Fig. 4. Two finite atate machines (E) (£2) con-
nected via delays (black semicircles).

These are four recursive equations for the four variables u, v, 2, {,
and if the four functions fy, fu, fa S are given, the problem of “golving”
for u(t), v(t), z(), ¢, ie, expressing these varinbles explicitly as func-
tions of time, is purely mathematical. In other words, the “meta-system”
(EQ) composed of the subsystems ¥ and Q, is physically as well as mathe-
matieally “glosed,” and its behavior is completely determined for all times.
Moreover, if at a particular time, say { = 0 (initial condition), the values
of all varinbles %(0), v(0), 2(0), £(0) are known, it is also completely
predictable. Since .this meta-system is without input, it churns away
according to its own rules, coming ultimately to a static or dynamic
squilibrium, depending on the rules and the initial conditions.

In the general case the behavior of such systems has been extensively
studied by eomputer simulation (Walker, 1965; Ashby and Walker, 1966;
Fitzhugh, 1963), while in the linear case the solutions for Eqs. (28) can be
obtained in straight-forward manner, particularly if the recursions can be
assumed to extend over infinitesimally small steps:

d .
W =it + 8) = () + 85 (29)
Under thene conditions the four Eqs. (28) become

4
'lb.' = Z a,,w; (30)

=1
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where the w; (7 = 1, 2, 3, 4) are now the' real numbers and replace the
four variables in question, w represents the first derivative with respect
to time, and the 16 coefficients a;; (7,7 = 1, 2, 3, 4) define the four linear

" functions under consideration. This system of simultaneous, first-order,

linear differential equations is solved by

4
wi(l) = 3 Ay et (31)
-l ,
in which A; are the roots of the determinant
[aij — x| =0 (32)
l...i=3;
6.',' =
0...i57

and the A,; depend on the initial conditions. Depending on whether the A;
turn out to be complex, real negative or real positive, the system will
ultimately oscillate, die out, or explode.*

While a discussion of the various modes of behavior of such systems
goes beyond this summary, it should be noted that a common behavioral
feature.in all cases is an initial transitory phase that may move over a
very large number of states until one is reached that initiates a stable
cyclic trajectory, the dynamic equilibrium. Form and length of both the
transitory and final equilibrial phases are dependent on the initial conditions,
a fact which led Ashby (1956) to call such systems “multistable.” Since
usually a large set of initial conditions maps into a single equilibrium, this
equilibrium may be taken as a dynamic representation of a set of events,
and in a multistable system each cycle as an “abstract” for these events.

With these notions let us see what can be inferred from a typical
learning experiment (e.g., John et al., 1969) in which an experimental
animal in a Y-maze is given a choice ( = C, for “choice”) between two
actions (n, = L, for “left turn” y m = R, for “right turn”). To these the
environment E, a trivial machine, responds with new inputs to the animal
m=z'->y' =4" =8, for “shock”; or o = 1’ >y’ = & = F, for
“food””), which, in turn, elicit in the animal a pain (7 = “—") or pleasure
(ns = “+") response. These responses cause X to return the animal to the
original choice situation (& = C).

Consider the simple survival strategy built into the animal by which

* This result is, of course, impossible in a finite state machine. It iy obtained here
only because of the replacement of the discrete and finite variables u, v, ¢, ¢, by w;
which are continuous and unlimited quantities.
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under neutral and pleasant conditions it maintains its internal state '
[’ = ¢, for (CY) and (Ft)], while under painful conditions it changes it
[t #¢, for (S¢)]. We shall assume eight internal states ({ = i; i=
1,23 ...,8).

With these rules the whole system (RF) is specified and its behavior
completely determined. For convenience, the three functions, f, = J for
the trivial machine E, f, and f¢ for O are tabulated in Tables I11a, b, c.

With the aid of these tables the eight behavioral trajectories for the
(QE) system, corresponding to the eight initial conditions, can be written.
This has been done below, indicating only the values of the pairs §f as

TABLE Illa
v = J(=)
(=% y(=¢)
L S
R F
L - . C
+ C
TABLE 11lb
n = !‘(fl f)
Y
n(=2') . 1 2 3 4 3 6 7 8

E(=1° s l-1-1-1-1-1-1-1"-

TABLE 1le

=D
t 1 2 3 4 5 6 7 8
c 1 2 3 4 5 6 7 8
t(=y" 8 2 3 4 5 6 7 8 1
F 1 2 $ 4 5 6 7 8
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they follow each other as consequences of the organism'’s responses and the
environment’s reactions.

Cl—»SI—»C‘Z—+S2—»C3—>S3—-—>C4-—>S4—»CS—»F5—>C5]

}
C2
C3
C4
Cs
C6 — F6 — 06—
C7—F7—C7

CS—»FS—»CSj

These trajectories show indeed the behavior as suggested before, initial
transients depending in length on the initial conditions, and ultimately a
dynamic equilibrium flipping back and forth between two external states
without internal state change. The whole system, and its parts, have
become trivial machines. Since, even with maximum semantic tolerance,
one cannot say a trivial machine has memory, one wonders what is in-
tended to be measured when at this stage it is opened and the internal
workings are examined. Does one wish to inspect its present workings?
Or, to see how much it has changed since earlier examinations? At best,
these are tests of the experimenter’s memory, but whether the machine
can appreciate any changes cannot, in principle, be inferred from experi-
ments whose conceptual design eliminates the quality which they intend
to measure.

3. Probabilistic Machines

"This dilemma can be seen in still another light if we adopt for the
moment the position of statistical learning theory (Skinner, 1959; Estes,
1959; Logan, 1959). Here either the concept of internal states is rejected
or the existence of internal states is ignored. But whenever the laws which
connect causes with effects are ignored, either through ignorance or else
by choice, the theory becomes that of probabilities.
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If we ure ignorant of the initial state in the previous example, the
chances are 50/50 that the animal will turn left or right on its first trial.
After one run the chances are 5/8 for turning right, and so on, until the
animal has turned from a ‘‘probabilistic (nontrivial) machine” to a
“detorministic (trivial) machine,” and henceforth always turns right. -
While a statistical learning theoretician will elevate the changing prob-
abilities in each of the subsequent trials to a ‘“first principle,” for the
finite state machinist this is an obvious consequence of the effect of certain
inputs on the internal states of his machine: they become inaccessible
when paired with “painful inputs.” Indeed, the whole mathematical ma-
chinery of statistical learning theory can be reduced to the paradigm of
drawing balls of different color from an urn while observing certain non-
replacement rules.

Let there be an urn with balls of m different colors labeled 0, 1, 2, . . .,
(m — 1). As yet unspecified rules permit or prohibit the return of a certain
colored ball when drawn. Consider the outcomes of a sequence of n draw-
ings, an “n-sequence,” as being an n digit m-ary number (e.g., m = 10;
n=12): -

v=15730218621414
1 1
Las First
drawn drawn

From this it is clear that there are
N(n, m) = m*

different n-sequences. A particular n-sequence will be called a »-number,
i.o.:

0 < v(m,n) = X j(H)méD < m*, (33)
(]}
where 0 < j(i) < (m — 1) represents the outcome labeled j at the ith

trial.
The probability of a particular n-sequence (represented by a »number)

is then

20 = IIpLi)] - (34)

L)
where p,[ j(i)] gives the probability of the color labeled 7 to oceur at the
ith trial in accordance with the specific v-number as defined in Eq. (33).
Since after each trinl with a “‘don’t return” outcome all probabilities
are changed, the probability of an event at the nth trial is said to depend
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on the “path,” i.e., on the past history of events, that led to this event.
Since there are m"—! possible paths that may precede the drawing of j at
the nth trial, we have for the probability of this event:

miy

Peld) = 2 pul(im™ + o(n — 1, m))
=0 ;

where jom* + v(n — 1, m) represent a »(n, m)-number which begins
with j. ,

From this a useful recursion can be derived. Let 7* be the colors of
balls which when drawn are not replaced, and j the others. Let np and n,
be the number of preceding trials on which J* and j came up respectively
(X npe+ >nj=n— 1), then the probability for drawing j (or j*) at
the nth trial with a path of Y n,e withdrawals is

P = g P ) (358)
and
. Njp — np .
Pa(J*) = m-p.-x(}:n;.) (35b)

where N = 3" N;+ X" N, is the initial number of balls, and N; and
N« the initial number of balls with colors j and j* respectively.

Let there be N balls to begin with in an urn, N, of which are white,
and (N — N,) are black. When a white ball is drawn, it is returned;
a black ball, however, is removed. With ‘“white” = 0, and “black” = ,
a particular n-sequence (n = 3) may be

v(3,2) =101
and its probability is: _
N—-N,—-1N,-1N-=N,

N-1 N -1 N

p(101) =

The probability of drawing a black ball at the third trial is then:
Ps(1) =ps(1 00) +ps(1 0 1) + ps(1 1 0) + pa(L 1 1)

We wish to know the probability of drawing a white ball at the nth trial.
We shall denote this probability now by p(n), and that of drawing a
black ball ¢(n) = 1 — p(n).

By iteratively approximating [through Eq. (35) ] trial tails of length
in as being path independent [p;(;) = P1( )] one obtains a first-order
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approximation for a recursion in p(n):
m
p(n) = p(n —m) + Zq(n — m)
orform = n — 1 (good for p(1) = 1, and n/N & 1):
' n—1
p(n) = p(1) + —5—q(1)
and for m = 1 (good for p(1) =~ 1):
1
p(n) = p(n—1) + 5 a(n —1)
A second approximation changes the above expression to

p(n) = p(n — 1) +0g(n — 1)

where 8 = (N, N.) is a constant for all trials. With this we have

p(n) — p(n — 1) = Ap = 8(1 — p)

which, in the limit for

lim é_l'i = d—p
anes A dn
gives
d
P = 8(1 — p(n))

dn
with the solution »
p(n) =1~ (1 — pp)e*

This, in turn, is an approximation for p = 1 of

Po
P+ (1 — po)et

p(n) =
which is the solution of
dp
an = op(l — p)

or, recursively expressed, of

p(n) = pn—1) +6p(n —1)-q(n—1)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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Fig. 5. Probability for drawing a white ball at the nth
trial from an urn having initially four balls of which 1,
2, or 3 are white, the others black. White balls are
replaced, black are not (a). Entropy at the nth trial (b).

Figure 5a compares the probabilities p(n) for drawing a white ball at
the n* trial, as calculated through approximation [(Eq. (42)] (solid
curves), with the exact values computed by an IBM 360/50 system with
a program kindly supplied by Mr. Atwood for an urn with initially four
balls (N = 4) and for the three cases in which-one, two, or three of these
are white (N, = 1; N, = 2; N, = 3). The entropy* H(n) in bits per
trial corresponding to these cases is shown in I'ig. 5b, and one may note
that while for some cases [p(1) < 0.5] it reaches a maximum in the
course of this game, it vanishes in all cases when certainty of the outcome
is approached [p(n) — 1].

Although the sketch on probabilities dealt exclusively with urns,
balls, and draws, students of statistical learning theory will have recognized
in Egs. (39), (41), and (42) the basic axioms of this theory [Estes, 1959;

*Or the “amount of uncertainty’’; or the “amount of information” received by
the outcome of each trial, defined by —H(n) = p(n) logz p(n) + g¢(n) log: q(n).
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Eqs. (5), (6), and (9) ], and there is today no doubt that under the given
experimental conditions animals will indeed trace out the learning curves
derived for these conditions.

Since the formalism that applies to the behavior of these expenmental
animals applies as well to our urn, the question now arises: can we say an
urn learns? If the anawer is “yes,” then apparently there is no need for
memory in learning, for there is no trace of black balls left in our urn when
it finally “responds” correctly with white balla when “stimulated” by each
draw; if the answer is “no,” then by analogy we must conclude it is not
learning that ia observed in these animal experiments.

To escape this dilemma it-is only necessary to recall that an urn is
just an urn, and it is animals that learn. Indeed, in these experiments
learning takes place on two levels. First, the experimental animals learned
to behave “urnlike,” or better, to behave in a way which allows the ex-
perimenter to apply urnlike criteria. Second, the experimenter learned
something about the animals by turning them from nontrivial (proba-
bilistic) machiries into trivial (deterministic) machines. Hence, it is from
studying the experimenter whence we get the clues for memory and
learning.

C. Finlte Fuﬁcﬂon Machines

1. Deterministic Machines

With this observation the question of where to look for memory and
learning is turned into the opposite direction. Instead of searching for
mechanisms in the environment that turn organisms into trivial machines,
we have to find the mechanisms within the organisms that enuble them to
turn their environment into a trivial machine.

In this formulation of the problem it scems to be clear that in order
to manipulate its environment an organism has to construct—somehow—
an internal representation of whatever environmental regularities it can
get hold of. Neurophysiologists have long since been aware of these ab-
stracting computations performed by neural wets from right at the receptor
level up to higher nuclei (Lettvin et al., 1959; Maturana el al., 1968;
Eccles et al., 1967). In other words, the question here is how to compute
functions rather than states, or how to build a machine that computes
programs rather than numerical results. This means that we have to look
for a formalism that handles “finite function machines.” Such a formalism
i8, of course, one level higher up than the one discussed before, but by
maintaining some pertinent analogies its easential features may become
apparent,
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Our variables are now functions, and since relations between functions
are usually referred to as “functionals,” the essential features of a calculus
of recursive functionals will be briefly sketched.

Consider a system like the one suggested in Fig. 3a, with the only
difference that it operates on a finite set of functions of two kinds, { f,:}
and [ f.;}. These functions, in turn, operate on their appropriate set of
states {y:} and {z;}. The rules of operation for such a finite function
machine are modeled exactly according to the rules of finite state machines.
Hence:

Jv=F[z,[.] (45a)
S = Fz,1.] (45b)

where F, and F, are the functionals which generate the driving functions
Jy and the subsequent internal function f,’ from the present internal function
J: and an input 2. One should note, however, that the input here is still a
state. This indicates an important feature of this formalism, namely, the
provision of a link between the domain of states with the entirely different
domain of functions. In other words, this formalism takes notice of the
distinction between entities and their representations and establishes a
relation between these two domains. :

_ Following a procedure similar to that carried out in Egs. (10) through
(14), the functions of type f. can be eliminated by expressing the present
driving function as result of earlier states of affairs. However, due to some
properties that distinguish functionals from functions, these earlier states
of affairs include both input states as well as output functions. We have
for n recursive steps:

Jo = @Oz, 2 200, 2%, L IR ] (46)

Comparing this expression with its analog for finite state machines [Eq.
(14) ], it is clear that here the reference to past events is not only to those
events that were the system’s history of inputs {z9*}, but also to its
history of potential actions { f,("*}. Moreover, when this recursive fune-
tional is solved explicitly for time (¢ = kA 1£=0,1,2,3,...) [compare
with Eq. (16) ], it is again the history of inputs that is “integrated out’;
however, the history of potential actions remains intact, because of a set
of n “eigenfunctions” which satisfy Eq. (46). We have explicitly for
(k4), and for the 7th eigenfunction:

LA (k8) = Ki(ka) [x:( £,9*) + Gi(z, £*, .., 2NN ] (47)
i=123...,n

with K, and G, being functions of (ka), the latter one giving a value that
depends on a tail of values in z”* which is n steps long. =; is again a
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functional, representing the output function f, of ¢ steps in the past in
terms of another function.

Although this formalism does not specify any mechanism capable of
performing the required computations, it provides us, at least, with an
adequate deseription of the functional organization of memory. Access to
“‘past experience” is given here by the availability of the system’s own
modua operandi st earlier occasions, and it is comfortable to see from ex-
pression (47) that the subtle distinction between an experience in the past
( £,9%), and the present experience of an experience in the past [x:( /,(9*) ]
~—i.e., thé distinction between “experience” and “memory”—is indeed
properly taken eare of in this formalism. Moreover, by the system’s access
to its earlier states of functioning, rather than to a recorded collection of
accidental pairs {z,, y:] that manifest this functioning, it can compute a
stream of “‘data” which are consistent with the system’s past experience.
These data, however, may or may not contain the output values {y;} of
those accidental pairs. This is the price one has to pay for switching
domaina, from atates to functions and back again to states. But this is a
small price indeed for the gain of an infinitely more powerful “storage
system” which computes the answer to a question, rather than stores all
anawers together with all possible questions in order to respond with the
answer when it can find the question (Von Foerster, 1965).

These examples may suffice to interpret without difficulty another
property of the finite function machine that is in strict analogy to the
finite atate machine. As with the finite state machine, a finite function
ma{chine will, when interacting with another system, go through initial

Fig: 6. Bymbolization of a finite state ma- l
chine by & computational tile. Input region
white; output region black. - z
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transients depending on initial conditions and settle in a dynamic equi-
librium. Again, if there is no internal function change (f.' = f. = f,) we
have a “trivial finite function machine” with its “goal function” fo. It is
easy to see that a trivial finite function machine is equivalent to a non-
trivial finite state machine.*

Instead of citing further properties of the functional organization of
finite function machines, it may be profitable to have a glance at various
possibilities of their structural organization. Clearly, here we have to deal
with aggregates of large numbers of finite state machines, and a more
efficient system of notation is required to keep track of the operations that
are performed by such aggregates.

2. Tesselations

Although a finite state machine consists of three distinet parts, the
two computers, f, and f,, and the store for 2, (see Fig. 3a), we shall represent
the entire machine by a single square (or rectangle) ; its input region de-
noted white, the output region black (Fig. 6). We shall now.treat this unit
as an elementary computer—a “computational tile,”” T;—which, when
combined with other tiles, T;, may form a mosaic of tiles—a “compu-
tational tesselation,” 3. The operations performed by the ith tile shall be
those of a finite state machine, but different letters, rather than subscripts,
will be used to distinguish the two characteristic functions. Subseripts shall
refer to tiles.

yi = filzi, 2)
z; = gi(x;, 20) ‘ (48)

Figure 7/1 sketches the eight possible ways (four each for the parallel
and the antiparallel case) in which two tiles can be connected. This results
in three classes of elementary tesselations whose structures are suggested
in Fig. 7/11. Cases I/1 and 1/3, and I/2 and 1/4 are equivalent in the
parallel case, and are represented in II/1 (“chain”) and II/2 (“stack”)
respectively. In the antiparallel case the two configurations I/1 and 1/3
are ineffective, for outputs cannot act on outputs, nor inputs on inputs;
cases I/2 and I/4 produce two autoromous elementary tesselations
A = [a*, a7}, distinct only by the sense of rotation in which the signals
are processed. '

Iterations of the same concatenations result in tesselations with the

* In the case of several equilibria { f,:}, we have, of course, a set of nontrivial finite
state machines that are the outcomes of various initial conditions.
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Fig. 7. Elementary tesselations.

following functional properties (for n iterations):

1. Stack
aT: 1)- i:f.-(z.'.vz«) (49)
1
2. Chain
vy faCfea S (29 L2 )% )z (50)
3. A = {at, a7}
ata~ atat
} -0 },‘ 0
aa*) a—a”
(i) Stack nA» (51)
(ii) Chain A (52)

Introducing a fourth elementary tesselation by connecting horizontally



176

TR

Fig. 8. Some examples of simple tesselations.

T— A>T, or TAT, we have

4. TAT
(i) Stack , n(TAT) (53)
(ii) Chain (TAT)» _ (54)

Figure 8 suggests further compositions of elementary tesselations. All
of these contain autonomous elements, for it is the presence of at least two
such elements as, e.g., in (TAT)? which constitute a finite function ma-

. chine. If none of these elements happens to be ““dead”—i.e., are locked into
a single state static equilibrium—they will by their interaction force each
other from one dynamic equilibrium into another one. In other words,
under certain circumstances they will turn each other from one trivial
finite function machine into another one, but this is exactly the criterion
for being a nontrivial finite function machine.

It should be pointed out that this concept of formal mathematical
entities interacting with each other is not new. John von Neumann (1966)
developed this concept for self-reproducing “automata’” which have many
properties in common with our tiles. Lars Lofgren (1962) expanded this
concept to include self-repair of certain computational elements which are
either stationary or freely moving in their tesselations, and Gordon Pask
(1962) developed similar ideas for discussing the social self-organization
of aggregates of such automata.




177

It may be noted that in all these studies ensembles of elements are
contemplated in order to achieve logical closure in discussing the pro-
prietory concept and autonomous property regarding the elements in
question as, e.g., self-replication, self-repair, sel[-organization, self-expla-
nation, ete. This is no aceident, as Lofgren (1968) observed, for the prefix
tgelf-" can be replaced by the term to which it is a prefix to generate a
second-order concept, a concept of a concept. Self-explanation is the
explanation of an explanation; self-organization is the organization of an
organization (Selfridge, 1962), etc. Since cognition is essentially a self-
referring process (Von Foerster, 1969), it is to be expected that in dis-
cussing its underlying mechanisms we have to contemplate function of
functions and structure of structures.

Sinee with the build-up of these structures their functional complexity
grows rapidly, a detailed discussion of their properties would go beyond the
scope of this article. However, one feature of these computational tessel-
ations can be easily recognized, and this is that their operational modalities
are closely linked to their structural organization. Here function and
structure go hand in hand, and one should not overlook that perhaps the
lion's share of computing has been already achieved when the system’s
topology is established (Werner, 1969). In organisms this is, of course,
done mainly by genetic computations. '

‘[his observation leads us directly to the physiology and physics of
organic tesselations.

il. BIOPHYSICS

A. Goneral Remarks

The question now arises whether or not one can identify structural
or functional units in living organisms which can be interpreted in terms
of the purely mathematical objeets mentioned previously, the “tiles,” the
“automata,” the *finite function machines,” ete. This method of approach,
first muking an interpretation and then looking for confirming entities,
seems to run counter to ‘“‘the scientific method” in which the “facts’’ are
supposed to precede their interpretation. However, what is reported as
“faet” has gone through the observer's cognitive system which provides
him, 80 to say, with a priori interpretations. Since our business here is to
identify the mechanisms that observe observera (i.e., becoming “gelf-
observers”), we are justified in postulating first the necessary functional
structure of these mechanisms. Moreover, this is indeed a popular approach,
as seen by the frequent use of terms like ‘“trace,” “engram,” “‘store,”
“pead-in,”" “read-out,” ete., when mechanisms of memory are discussed.
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Clearly, here too the metaphor precedes the observations. But metaphors
have in common with interpretations the quality of being neither true
nor false; they are only useful, useless, or misleading.

When a functional unit is conceptually isolated—an animal, a brain,
the cerebellum, neural nuclei, a single neuron, a synapse, a cell, the organelles,
the genomes, and other molecular building blocks—in its abstract sense the
concept of “machine” applied to these units is useful, if it were only to
discipline the user of this concept to identify properly the structural and
functional components of his “machine.” Indeed, the notions of the finite
state machine, or all its methodological relatives, have contributed—
explicitly or implicitly—much to the understanding of a large variety of
such functional units. For instance, the utility of the concepts “transeript,”
“en-coding,” “de-coding,” “computation,” etc., in molecular genetics can-
not be denied. :

Let the n-sequence of the four bases (b = 4) of a particular DNA
molecule be represented by a v-number v(n, b) [see Eq. (33) J; let Tr(») =75
be an operation which transforms the symbols (0, 1, 2, 3) — (3, 2, 1, #),
in that order, with 0 = thymine, 1 = cytosine, 2 = guanine, 3 = adenine,
and 8 = uracil, and I be the identity operation I(y) = »; finally, let
®[F(n, b)] = »(n/3,a) = u(m, @), with a = 20,and 5=0,1, ..., 19,
representing the 20 amino acids of the polypeptide chain. Then

(i) DNA replication: » = I(») ' (55a)
. (i1)) DNA/RNA transcript: 5 = Tr(v) _ (55b)
(iit) Protein synthesis: u = &(5) . (55¢)

While the operations I and Tr require only trivial machines for the
process of transcription, ® is a recursive computation of the form

J(@) =y@) = y(@ — 1) + a'f(z) (56)
- Using the suggested recursion [compare with Eq. (14) J:

¥(i) = af(2) + @ If(2*) + af(2*) . ..
or

VD) = Saaony 6

and
y(m) = u(m, a)

The function f is, of course, computed by the ribosome which reads
the codon r, and synthesizes the amino acids which, in turn, are linked
together by the recursion to a connected polypeptide chain.
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Visualizing the whole process as the operations of a sequential finite
state machine was probably more than just a clue in “breaking the genetic
code” and identifying as the input state to this machine the triplet (u, v, w)
of adjacent symbols in the B-number representation of the messenger RNA.

A method for computing »-numbers of molecular sequences directly
from properties of the generated structure was suggested by Pattee (1961).
He used the concept of a sequential “shift register,” i.e., in principle that
of an autonomous tile. For computing periodic sequences in growing helical
molecules, the computation for the next element to be attached to the
helix is solely determined by the present and some earlier building block.
No extraneous computing system is required.

~If on u higher level of the hierarchical organization the neuron is

taken as a functional unit, the examples are numerous in which it is seen
as a recursive function computer. Depending on what is taken to be the
“signal,” a single pulse, an average frequency code, a latency code, a
probability code (Bullock, 1968), etc., the neuron becomes an “all or
nothing” device for computing logical functions (McCulloch and Pitts,
1943), a linear element (Sherrington, 1906), a logarithmic element, ete.,
by changing in essence only a single parameter characteristic for that
neuron (Von Foerster, 1967b). The same i3 true for neural nets in which
the recursion is achieved by loops or sometimes directly through recurring
fibers. The “reverberating’ neural net is a typical example of a finite state
machine in its dynamic equilibrium.

In the face of perhaps a whole library ﬁlled with recorded instances
in which the concept of the finite state machine proved useful, it may
come as n surprise that on purely physical grounds these systems are
absurd. In order to keep going they must be nothing less than perpetual
motion machines. While this is easily accomplished by a mathematical
object, it is impossible for an object of reality. Of course, from a heuristical
point of view it is irrelevant whether or not a model is physically realizable,
#y long ns it is self-consistent and an intellectual stimulus for further
investigations.

However, when the flow of energy between various levels of organi-
zation iy neglected, and the mechanisms of energy conversion and transfer
are ignored, difficulties arise in matching descriptive parameters of func-
tional units on one level to those of higher or lower levels. Vor instance,
& relation between the code of a particular nuclear RNA molecule and,
say, the pulse frequency code at the same neuron cannot be established,
unless mechanisms of energy transfer are considered. As long as the question
a8 to what keeps the organism going and how this is done is not asked,
the gap between functional units on different levels of organization remains
open. Cun it be closed by thermodynamies?



180

Three different kinds of molecular mechanisms that offer themselves
readily for this purpose will be briefly discussed. All of them make use of
various forms of energy as radiation (vh), potential energy (V, structure),
work (pAr), and heat (kAT'), and its various conversions from one form

to another.
RADIATION aessmde STRUCTURE

STRUCTURE
ENERGY . STRUCTURE
| = woRk <
HEAT
HEAT

We remain in the terminology of finite state machines and classify
the three kinds of mechanism according to their inputs and their outputs,
dropping, however, for the moment all distinctions of forms of energy,
except that of potential energy (structure) as distinct from all other forms

(energy).

(i) Molecular store: Energy in,
Energy out.
(it) Molecular computer: Energy in,
' , Structure out.
(iii) Molecular carrier: Energy and structure in,
: Energy out.

These three cases will now be briefly reviewed.

B. Molecviar Store

Probably the most obvious, and hence perhaps the oldest, approach
to link macroscopic behavior, as for example, the forgetting of nonsense
syllables (Ebbinghaus, 1885), with the quantum mechanical decay of the
available large number of excited metastable states in macromolecules,
assumes no further analyzable “clementary impressions” that are associated
with a molecule’s meta-stable state (Von Foerster, 1948; Von Foerster,
1949). By a nondestructive read-out they can be transferred to another
molecule, and a record of these elementary impressions may either decay
or else grow, depending on whether the product of the quantum decay time
constant with the scanning rate of the read-out is either smaller or else larger
than unity. While this model gives good agreement between macroscopic
variables such as forgetting rates, temperature dependence of conceived
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Inpse of time (Hoaglund, 1951; Hoagland, 1954), and such microscopic
variables as binding energics, electron orbital frequencies, it suffers the
malnise of all recording schemes, namely, it is unable to infer anything
from the aceumulated records. Only if an inductive inference machine
which computes the appropriate behavior functions is attached to this
record ean an organism survive (Von Foerster et al., 1968). Hence, one
may abandon speculations nbout systems that just record specifics, and
contemplate those thut compute generalizations.

C. Molecular Computer

The good match between macroscopic anc microscopic variables of
the previous model suggests thut this relation should be pursued further.
Indeed, it ean be shown (Von Foerster, 1969) that the energy intervals
between excited meta-stable states are so organized that the decay times
in the lattice vibration band correspond to neuronal pulse intervals, and
their energy levels to a polarization potential of from 60 mV to 150 mV.
Consequently, a pulse train of various pulse intervals will “pump” such a
molecule up into higher states of excitation, depending on its initial con-
dition. However, if the excitation level reaches about 1.2 eV, the molecule
undergoes configurational changes with life spans of 1 day or longer. In
this “structurally charged” state it may now participate in various ways
in altering the transfer function of a neuron, either transmitting its energy
to other molecules or facilitating their reaction. Since in this model un-
directed electrical potential energy is used to cause specific structural
change, it is referred to as ‘“energy in—structure out.” This, however,
gives rise to a concept of molecular computation, the result of which is
deposition of energy on a specific site of utilization. This is the content of

the next and last model.

D. Moleculor Carrier

One of the most widely used principles of energy dissemination in a
living organism is that of separation of sites of synthesis and utilization.
The general method employed in this transfer is a eyelic operation that
involves one or many molecular carriers which are “charged” at the site
where environmental energy can be absorbed, and are “discharged’’ where
this energy must be used. Charging and discharging is usually accomplished
by chemical modifications of the basic carrier molecules. One obvious ex-
ample of the directional flow of energy and the eyclic flow of matter is,
of course, the complementarity of the processes of photosynthesis and
respiration (Fig. 9). Light energy, vh, breaks the stable bonds of inorganic
oxides and transforms them into energetically charged organic molecules.
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kAT
plv

Fig. 9. Directional flow of energy and cyclic flow of
matter in photosynthesis coupled with respiration.

These, in turn, are burned up in the respiratory process, releasing the energy
in the form of work, pAv, or heat, kAT, at the site of utilization and return
again as inorganic oxides to the site of synthesis.

Another example is the extremely involved way in which in the mito-
chondria the uphill reaction is accomplished. This reaction not only
synthesizes adenosine triphosphate (ATP) by coupling a phosphate group
to adenosine diphosphate (ADP), but also charges the ATP molecule with
considerable energy which is effectively released during muscular contrac-
_tion; the contraction process converts ATP back again into ADP by losing
the previously attached phosphate group.

Finally, the messenger RNA may be cited as an example of separate
sites for synthesis and utilization, aithough in this case the energetics are
as yet not so well established as in the other cases. Here, apparently it is
structure which is to be transferred from one place to another, rather than
energy.

Common in all these processes is the fact that during synthesis not
only a releasable package of energy, AE, is put on this molecular carrier

" but also an address label saving where to deliver the package. This address
requires an additional amount of organization, —AH, (negentropy), in
order to locate its destination. Hence we have the crucial condition

AF
N7, <0 (58.)
which says “for high energy have a low entropy, and for low energy have

a high entropy.”’ This is, of course, contrary to the usual course of events

in which these two quantities are coupled with each other in a positive
relationship.

It can be shown, however, that if a system is composed of constituents
which in the ground state are separated, but when “excited” hang together
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by “rensonably stable’” metastable states, it fulfills the crucial condition
above (Von Foerster, 1964).
Let

v =':§:(A¢""' + Bsin ?1;3) (59)

with _
A/B > I and x/p>1

be the potential distribution in two one-dimensional linear “periodic
crystals,” C* and C-, where the = refer to corresponding cases. The
essentinl difference between these two linear structures which can be
envisioned as linear distributions of electric charges changing their sign
(almost) periodically is that energy is required to put “crystal” C*+ to-
gether, while for “crystal” C~ about the same energy is required to de-
compose it into its constituents. These linear lattices have metastable
equilibria at
Ct—z,23,25...

C—> x84 ..
which are solutions of
2xr 1 Ap

ja —— g —— 1
e cos P 2x B

These states are protected by an energy threshold which lets them stay in
this state on the average of amount an time

S . (60)

where 75! is an electron orbital frequency, and AV is the difference be-
tween the energies at the valley and the crest of the potential wall

[£AV, = V(za) — V(£at) ]
In order to find the entropy of this configuration, we solve the Schro-

dinger equation (given in normalized form):
vV A= V(@)]=0 : (61)

for ila eigenvalues A, and eigenfunctions ¥, ¥:*, which, in turn, give the
probability distribution for the molecule being in the sth eigenstate:

dp
(E;)‘ = yid* (62)
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with, of course,

+e
/ Viy*dr = 1 (63)
whence we obtain the entropy

+w
Hi= - Yivi* Ing,-¢9* (64)

for the ith eigenstate.

It is significant that indeed for the two crystals C*+ and C- the change
in the ratio of energy to entropy for charging (AE = e(V{(zs) — V(2ns2))
goes into opposite directions:

AEN™
C-—’Xil‘) >0

AE\*
+ — 0
ct—(38) < |
This shows that the two crystals are quite different animals: one is dead

(C), the other is alive (C+).

IV. SUMMARY

In essence this paper is a proposal to restore the original meaning of
concepts like memory, learning, behavior, ete. by seeing them as various
manifestations of a more inclusive phenomenon, namely, cognition. An
attempt is made to justify this proposition and to sketch a conceptual
machinery of apparently sufficient richness to describe these phenomena
in their proper extension. In its most concise form the proposal was pre-
sented as a search for mechanisms within living organisms that enable
them to turn their environment into a trivial machine, rather than a search
for mechanisms in the environment that turn the organisms into trivial
machines.

This posture is justified by realizing that the latter approach—when
it succeeds—fails to account for the mechanisms it wishes to discover, for
a trivial machine does not exhibit the desired properties; and when it
fails does not reveal the properties that made it fail.

Within the conceptual framework of finite state machines, the calculus
of recursive functionals was suggested as a descriptive ( phenomenological)
formalism to account for memory as potential awareness of previous
interpretations of experiences, hence for the origin of the concept of
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“change,” and to aceount for transitions in domains that oecur when

going from “facts” to “description of facts"” and-—since these in turn are
fucts too—to “descriptions of deseriptions of facts’ and so on. ,

Elementary finite function machines ean be strung together to form -
lineur or two-dimensional texselations of considerable computational flexi-
bility and complexity. Such tesselations are useful models for aggregates
of interncting functional units at various levels in the hierarchical organi-
zution of organisms. On the molecular level, for instance, a stringlike
tesselntion coiled to a helix may compute itself (wlf-rephc.xtlon) or, in
conjunction with other elements, compute other moleculur functional units
{(synthesis).

While in the discussion of descriptive. formalisms the concept of
recursive funectiouals provides the bridge for passing through various
descriptive domuains, it is the coneept of energy transfer connected with
entropic change that links operationally the functional units on various
organizationnl levels. It is these links, eonceptual or operational, which are
the prcrvqulmtou for interpreting structures and function of a living or-
gAnism seen as un uutonomous Holf-rolvrrmg organism. When these links
are ignored, the coneept of “organism’ is void, and its unrelated pieces
becomes trivialitics or remain mysteries
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